- Оспорить ДТП

Пособия по проектированию автостоянок

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Пособия по проектированию автостоянок». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

При проектировании помещений для хранения автомобилей и постов технического обслуживания (ТО) и технического ремонта (ТР) основ­ными факторами, определяющими размеры сооружений, являются габариты автомобилей и наименьшие радиусы их поворо­тов.

В таблице 1 приведены основные габаритные характеристики легковых автомобилей и микроавтобусов (1 категории), наиболее часто встречающиеся в практике проектирования. К автомобилям 1 категории относятся автомобили, имеющие длину до 6 м и ширину — до 2,1 м.

В таблице 2 приведены рекомендуемые расстояния между автомо­билями, элементами строительных конструкций зданий и сооружений в помещениях хранения автомобилей и в помещениях ТО и ТР.

Автомобиль при движении в пределах здания совершает повороты и другие маневры, в том числе при установке его на место хранения или для ТО и ТР. При этом должны соблюдаться так называемые защитные зоны (рекомендуемое приближение), исключающие взаимные повреж­дения въезжающего автомобиля и автомобилей, стоящих в одном или в противоположном с ним ряду (по другую сторону проезда).

Ширина внутреннего проезда в помещениях хранения автомобилей и постах ТО и ТР, приведенная в табл. 3, определена с учетом рекомен­дуемого приближения движущегося автомобиля к конструкциям здания (сооружения), к оборудованию и к автомобилям на местах хранения.

Для условий, отличных от приведенных в табл. 1 и 2, необходимые при проектировании планировочные параметры проезда могут быть определены графическим путем при помощи шаблона (рис. 1). Шаблон изготавливается из прозрачного материала в масштабе чертежа, накладывается на него и вращается относительно оси О. При этом рекомендуется выполнять следующие условия:

в помещениях хранения автомобилей у въезда на машино-место от строительных конструкций (оборудования) до въезжающего автомо­биля должно оставаться не менее 0,2 м (защитная зона), а с противоположной стороны от въезда — не менее 0,7 м.;

на постах ТО и ТР соответственно — не менее 0,3 и 0,8 м

2. ПЛАНИРОВОЧНЫЕ РЕШЕНИЯ АВТОСТОЯНОК

На рис. 2 представлены наиболее распространенные планировочные типы автостоянок.

а)

б)

в)

Для организации перемещения автомобилей по вертикали в многоэтажных автостоянках используются рампы и лифты.

Устройство рамп, их количество и организация движения на них оказывают непосредственное влияние на планировку стоянки.

На рис. 4 представлена классификация рамп и рамповых устройств, а на рис. 5 изображены наиболее применяемые типы рамп.

Устройство мойки автомобилей при автостоянке предусматривается в соответствии с МГСН 5.01-94*.

Количество постов мойки рекомендуется определять из условия, что мойкой в течение суток пользуется около 10 % автомобилей от общей вместимости автостоянки для постоянного хранения и около 5 % автомобилей от общей вместимости стоянки для кратковременного хранения. Необходимо учитывать:

пропускную способность моечных постов (при ручной шланговой мойке — 5-6 авт. в час, при механизированной — 10-12 авт. в час);

время возврата автомобилей на автостоянку — примерно через 4 часа.

В автостоянках для индивидуальных владельцев (с закрепленными машино-местами) рекомендуется предусматривать на 100 и более (до 200 включительно) машино-мест 1 пост ТО (ТР) и по 1 посту на каждые последующие полные и неполные 200 машино-мест.

Планировку постов мойки, ТО и ТР автомобилей в составе авто­стоянки следует выполнять с учетом параметров приведенных в табл. 2 и 3 настоящего пособия.

Высоту помещений постов ручной шланговой мойки автомобилей, а также постов ТО и ТР напольных и оборудованных смотровыми канава­ми следует принимать не менее 2,5 м в чистоте. При оборудовании моечных постов механизированными щеточными установками, высоту помещений следует принимать не менее 3,6 м. в чистоте

Размеры осмотровых канав рекомендуется проектироваться с учетом следующих требований:

длина рабочей зоны осмотровой канавы должна быть не менее габаритной длины обслуживаемого автомобиля (но не менее 5 м);

ширина осмотровой канавы должна устанавливаться, исходя из размеров колеи автомобиля с учетом устройства наружных реборд (0,9 м для легковых автомобилей, также для автобусов особо малого класса);

рекомендуемая глубина осмотровой канавы -1,5 м.

На въездной части осмотровой канавы целесообразно предусмат­ривать рассекатель высотой 0,15 м.

Для входа в досмотровую канаву рекомендуется предусматривать лестницы шириной не менее 0,7 м.

Входы в осмотровые канавы не следует располагать под автомоби­лями и на путях движения и маневрирования автомобилей, рекомен­дуется также устройство ограждения указанных входов перилами высотой 0,9 м.

На тупиковых осмотровых канавах целесообразно предусматривать устройства упоров для колес автомобилей.

В осмотровых канавах желательно устройство ниш для размещения светильников и розеток для включения переносных ламп напряжением 12 В

Системы вытяжной противодымной вентиляции предусматриваются

для удаления продуктов горения с этажа (яруса), на котором возник пожар:

из помещений хранения автомобилей;

из помещений вспомогательного назначения (ТО, ТР, мойки и др.);

из коридоров (отсеков коридоров), сообщающихся с выходом из горящего помещения;

из изолированной рампы.

Типовые схемы систем для помещений хранения автомобилей приведены на рис. 10, для изолированных рамп — на рис. 11. Согласно приведенным схемам удаление продуктов горения с горящего этажа (яруса) может производиться различными способами. При расположе­нии венткамер на каждом этаже (ярусе) забор продуктов горения осуществляется через отверстия вытяжного канала из верхней части объема горящего помещения (или смежного с ним отсека коридора) и посредством вытяжного вентилятора обеспечивается выброс через вертикальную шахту. Продукты горения попадают в шахту через нормально-закрытый противопожарный клапан с автоматически- и дистанционно-управляемым приводом (рис. 10-а). Аналогичным образом может быть предусмотрено удаление продуктов горения через вентиляторы, установленные на верхнем этаже (ярусе) или специально выделенном техническом этаже (рис. 10-б). При установке дымовых клапанов непосредственно в поэтажных проемах дымовых вытяжных шахт может быть реализована обычная схема (рис. 10-в). Модифициро­ванными вариантами схем на рис. 10-б и 10-в являются схемы на рис. 10-д и 10-г (последние более предпочтительны, учитывая, сокращение количества вентиляторов). Схема на рис. 10-е основана на принципе совмещения вытяжных систем общеобменной и противодымной вентиляции. Для реализации схемы этого типа необходимо пре­дусматривать применение вентиляторов с регулируемыми параметрами (например, двухскоростных), а также установку нормально-открытых противопожарных клапанов (по одному в каждом поэтажном ответвлении вытяжных воздуховодов верхнего и нижнего, уровней). Посредством таких клапанов может производиться подключение заборных отверстий канала верхнего уровня на горящем этаже (ярусе) и отключение всех остальных каналов.

Системы приточной противодымной вентиляции предусматриваются для подачи наружного воздуха:

в лифтовые шахты;

в лестничные клетки;

в тамбур-шлюзы горящего этажа (яруса).

Соответствующие типовые схемы систем приведены на рис. 12.

Основными параметрами систем приточно-вытяжной противодым­ной вентиляции являются давление и расход на уровне защищаемых объемов (помещений). Для подбора вентиляторов необходимо учитывать подсосы (утечки) через неплотности вентиляционных каналов (в поверочном расчете для компоновки размещения венткамер и каналов).

Для определения основных параметров необходимо принимать следующие исходные данные:

возникновение пожара (возгорание автомобиля, или загорание в одном из вспомогательных помещений) в надземной автостоянке на нижнем типовом этаже, а в подземной — на верхнем и нижнем типовых этажах;

геометрические характеристики типового этажа (яруса) -эксплуати­руемая площадь, проемность, площадь ограждающих конструкций;

удельная пожарная нагрузка (энергетические характеристики, ГОСТ 12.1.004);

положение проемов эвакуационных выходов (открыты с этажа пожара до наружных выходов);

параметры наружного воздуха — по СНиП 2.04.05-91*.

Основные параметры противодымной вентиляции следует рассчиты­вать:

для систем вытяжной противодымной вентиляции по СНиП 2.04.05-91* (только при высоте этажей/ярусов не менее 3,0 м) или на основе теплогазообмена горящего и смежных помещений (по условиям пре­дотвращения выхода продуктов горения в смежные помещения и на пути эвакуации);

для систем приточной противодымной вентиляции по условиям обеспечения минимально допустимых скоростей истечения воздуха через открытые проемы и давлений по СНиП 2.04.05-91*.

Расчетные параметры должны удовлетворять условиям обеспечения материального баланса. Величины перепада давлений на закрытых дверях не должны превышать 150 Па при совместном действии приточных и вытяжных систем противодымной вентиляции.

1.1. Настоящее Пособие подготовлено с целью оказания помощи проектировщикам, разрабатывающим проекты стоянок легковых автомобилей (автостоянок) в г. Москве.

1.2. При подготовке выпуска 1 Пособия учтен опыт проектирования автостоянок в Москве и применения МГСН 5.01-94* в 1994-1997 гг. по данным Мосгосэкспертизы . В состав выпуска 1 Пособия включены разъяснения и рекомендации, способствующие решению наиболее часто встречающихся проблем, связанных с разработкой планировки и противопожарной защиты автостоянок. В выпуске 1 Пособия приводятся примеры планировочных решений автостоянок, согласованных Мосгоэкспертизой и принятых к строительству. Учитывая широкий круг проблем, возникающий при проектировании и строительстве автостоянок в Москве, намечена подготовка нескольких выпусков Пособия. В очередной выпуск Пособия будут включены вопросы вентиляции, шумозащиты и другие проблемы, санитарной защиты при проектиро­вании автостоянок.

1.3. Разъяснения и рекомендации, вошедшие в настоящее Пособие и учитывающие сложившийся опыт проектирования автостоянок, не следует считать нормативными требованиями. Проектировщики вправе принимать другие решения, отвечающие действующим нормам.

1.4. Нормативные документы, применяемые при проектировании автостоянок :

СНиП 10-01 94 «Система нормативных документов в строитель­стве. Основные положения.»

СНиП 2.07.01-89* «Планировка и застройка городских и сельских поселений».

МГСН 5.01-94* «Стоянки легковых автомобилей».

МГСН-1.01-94 «Временные нормы и правила проектирования планировки и застройки Москвы» (Корректировка и дополнение ВСН 2-85).

МГСН 4.04-94 «Многофункциональные здания и комплексы».

ГОСТ 12.1.004. «Пожарная безопасность. Общие требования».

СНиП 2.04.09-84 «Пожарная автоматика зданий и сооружений».

Пособие 15-91 к СНиП 2. 04.05.-91* « Противодымная защита при пожаре и вентиляция подземных стоянок легковых автомобилей».

При проектировании помещений для хранения автомобилей и постов технического обслуживания (ТО) и технического ремонта ( ТР ) основ­ными факторами, определяющими размеры сооружений, являются габариты автомобилей и наименьшие радиусы их поворо­тов.

В таблице 1 приведены основные габаритные характеристики легковых автомобилей и микроавтобусов (1 категории), наиболее часто встречающиеся в практике проектирования. К автомобилям 1 категории относятся автомобили, имеющие длину до 6 м и ширину — до 2,1 м.

В таблице 2 приведены рекомендуемые расстояния между автомо­билями, элементами строительных конструкций зданий и сооружений в помещениях хранения автомобилей и в помещениях ТО и ТР .

Автомобиль при движении в пределах здания совершает повороты и другие маневры, в том числе при установке его на место хранения или для ТО и ТР . При этом должны соблюдаться так называемые защитные зоны (рекомендуемое приближение), исключающие взаимные повреж­дения въезжающего автомобиля и автомобилей, стоящих в одном или в противоположном с ним ряду (по другую сторону проезда).

Ширина внутреннего проезда в помещениях хранения автомобилей и постах ТО и ТР , приведенная в табл. 3, определена с учетом рекомен­дуемого приближения движущегося автомобиля к конструкциям здания (сооружения), к оборудованию и к автомобилям на местах хранения.

Для организации перемещения автомобилей по вертикали в многоэтажных автостоянках используются рампы и лифты.

Устройство рамп, их количество и организация движения на них оказывают непосредственное влияние на планировку стоянки.

На рис. 4 представлена классификация рамп и рамповых устройств, а на рис. 5 изображены наиболее применяемые типы рамп.

(примеры планировочных решений)

Устройство мойки автомобилей при автостоянке предусматривается в соответствии с МГСН 5.01-94*.

Количество постов мойки рекомендуется определять из условия, что мойкой в течение суток пользуется около 10 % автомобилей от общей вместимости автостоянки для постоянного хранения и около 5 % автомобилей от общей вместимости стоянки для кратковременного хранения. Необходимо учитывать:

пропускную способность моечных постов (при ручной шланговой мойке — 5-6 авт. в час, при механизированной — 10-12 авт. в час) ;

время возврата автомобилей на автостоянку — примерно через 4 часа.

В автостоянках для индивидуальных владельцев (с закрепленными машино-местами ) рекомендуется предусматривать на 100 и более (до 200 включительно) машино-мест 1 пост ТО ( ТР ) и по 1 посту на каждые последующие полные и неполные 200 машино-мест .

Планировку постов мойки, ТО и ТР автомобилей в составе авто­стоянки следует выполнять с учетом параметров приведенных в табл. 2 и 3 настоящего пособия.

Высоту помещений постов ручной шланговой мойки автомобилей, а также постов ТО и ТР напольных и оборудованных смотровыми канава­ми следует принимать не менее 2,5 м в чистоте. При оборудовании моечных постов механизированными щеточными установками, высоту помещений следует принимать не менее 3,6 м. в чистоте

Размеры осмотровых канав рекомендуется проектироваться с учетом следующих требований:

длина рабочей зоны осмотровой канавы должна быть не менее габаритной длины обслуживаемого автомобиля (но не менее 5 м);

ширина осмотровой канавы должна устанавливаться, исходя из размеров колеи автомобиля с учетом устройства наружных реборд (0,9 м для легковых автомобилей, также для автобусов особо малого класса);

рекомендуемая глубина осмотровой канавы -1 ,5 м.

На въездной части осмотровой канавы целесообразно предусмат­ривать рассекатель высотой 0,15 м.

Для входа в досмотровую канаву рекомендуется предусматривать лестницы шириной не менее 0,7 м.

Входы в осмотровые канавы не следует располагать под автомоби­лями и на путях движения и маневрирования автомобилей, рекомен­дуется также устройство ограждения указанных входов перилами высотой 0,9 м.

На тупиковых осмотровых канавах целесообразно предусматривать устройства упоров для колес автомобилей.

В осмотровых канавах желательно устройство ниш для размещения светильников и розеток для включения переносных ламп напряжением 12 В

Противодымная защита автостоянок предназначена для обеспечения безопасной эвакуации людей (водителей и технического персонала) при возникновении пожара в одном из помещений на любом этаже (ярусе). Посредством противодымной защиты должно быть предусмотрено эффективное блокирование распространения продуктов горения:

на пути эвакуации;

в смежные пожарные отсеки (на этаже/ярусе пожара);

на выше- и нижележащие этажи/ярусы (по отношению к горящему помещению);

в помещения (группы помещений), встроенные, пристроенные или других функциональных зон (при устройстве автостоянок как составных частей многофункциональных зданий и комплексов).

При обосновании технической и экономической целесообразности противодымная защита автостоянок может иметь дополнительные функции:

по обеспечению оптимальных условий для действий подразделений пожарных (в комплексе или раздельно — спасение людей, обнаружение пожара, тушение пожара);

по выполнению операций, в случае при эвакуации автомобилей;

по сохранению материальных ценностей, по созданию безопасной среды обитания в помещениях специального назначения (сооружения убежищ гражданской обороны, объектов МО , ФСБ России и др.) в случае встроенных автостоянок.

Для реализации указанных дополнительных функций технические решения противодымной защиты автостоянок должны разрабатываться на основе технических заданий, согласовываемых в установленном порядке с заказчиками и органами УГПС ГУВД г. Москвы.

В рамках настоящего пособия изложены способы и технические решения противодымной защиты автостоянок по прямому назначению — для обеспечения безопасности людей при пожаре.

В составе противодымной защиты автостоянок необходимо предус­матривать:

системы приточно-вытяжной противодымной вентиляции;

конструкции и оборудование специального назначения;

технические средства управления.

Системы вытяжной противодымной вентиляции предусматриваются

для удаления продуктов горения с этажа (яруса), на котором возник пожар:

из помещений хранения автомобилей;

из помещений вспомогательного назначения (ТО, ТР , мойки и др.);

из коридоров (отсеков коридоров), сообщающихся с выходом из горящего помещения;

из изолированной рампы.

Типовые схемы систем для помещений хранения автомобилей приведены на рис. 10, для изолированных рамп — на рис. 11. Согласно приведенным схемам удаление продуктов горения с горящего этажа (яруса) может производиться различными способами. При расположе­нии венткамер на каждом этаже (ярусе) забор продуктов горения осуществляется через отверстия вытяжного канала из верхней части объема горящего помещения (или смежного с ним отсека коридора) и посредством вытяжного вентилятора обеспечивается выброс через вертикальную шахту. Продукты горения попадают в шахту через нормально-закрытый противопожарный клапан с автоматически- и дистанционно-управляемым приводом (рис. 10-а). Аналогичным образом может быть предусмотрено удаление продуктов горения через вентиляторы, установленные на верхнем этаже (ярусе) или специально выделенном техническом этаже (рис. 10-б). При установке дымовых клапанов непосредственно в поэтажных проемах дымовых вытяжных шахт может быть реализована обычная схема (рис. 10-в). Модифициро­ванными вариантами схем на рис. 10- б и 10-в являются схемы на рис. 10-д и 10-г (последние более предпочтительны, учитывая, сокращение количества вентиляторов). Схема на рис. 10-е основана на принципе совмещения вытяжных систем общеобменной и противодымной вентиляции. Для реализации схемы этого типа необходимо пре­дусматривать применение вентиляторов с регулируемыми параметрами (например, двухскоростных), а также установку нормально-открытых противопожарных клапанов (по одному в каждом поэтажном ответвлении вытяжных воздуховодов верхнего и нижнего, уровней). Посредством таких клапанов может производиться подключение заборных отверстий канала верхнего уровня на горящем этаже (ярусе) и отключение всех остальных каналов.

Клапаны КДМ -2 предназначены для применения в системах противодымной вентиляции зданий и сооружений различного назначения в качестве дымовых и нормально закрытых противопожарных клапанов . Применение клапанов осуществляется в соответствии со СНиП 41-01-2003 и территориальными строительными нормами . Клапаны не подлежат установке в помещениях категорий А и Б по взрывопожароопасности .

Предел огнестойкости клапана : в режиме дымового клапана — EI 90/ E 90; в режиме противопожарного нормально закрытого клапана — EI 30.

Клапаны сертифицированы ВНИИПО МЧС России , Республиканским центром сертификации МЧС Республики Беларусь , Государственным центром сертификации МЧС Украины . Клапаны изготавливаются «стенового» и «канального» типов .

Клапаны КДМ -2 «стенового» типа

Пособия по проектированию автостоянок

3.11. Принятое в стандарте СЭВ 384-76 понятие нормативного сопротивления материалов, связанное с контрольной или браковочном их характеристикой, устанавливаемой государственными стандартами на материалы, не применяется к кладке, так как она является композитным материалом и ее прочность не установлена стандартами.

При установлении расчетных сопротивлений для каменных конструкций принята следующая система коэффициентов. Коэффициент изменчивости прочности кирпичной кладки на основании статистических данных принят равным С=0,15, а условное нормативное сопротивление Rn = Ru (1-2С)=0,7 Ru , при этом обеспеченность величины С равна 0,98. Вероятное понижение прочности кладки по сравнению с уровнем, принятым в нормах, учитывается делением Rn на коэффициент 1,2, а другие второстепенные факторы, не учитываемые расчетом, и дефекты (ослабление кладки пустошовкой, гнездами, небольшие отклонения столбов и стен от вертикали и т. п.) — на коэффициент 1,15. Таким образом, дополнительный коэффициент надежности для кирпичной кладки принят равным 1,2 ´ 1,15=1,4 и расчетное сопротивление R =0,7 Ru /1,4=0,5 Ru .

Расчетные сопротивления кладки сжатию из всех видов каменных и бетонных изделий приведены в табл. 5, пп. [3.1-3.14]. Средние ожидаемые пределы прочности кладки могут быть определены, в случае необходимости, умножением расчетных сопротивлений на коэффициенты безопасности, приведенные в п. [3.20].

3.12. Расчетные сопрот0 асимметрии r :

3.17. Каменная кладка является упругопластическим телом. Ее деформации зависят от длительности приложения нагрузки или же скорости загружения кладки.

Различают:

а) упругие (или мгновенные) деформации. К этим деформациям близки также деформации кладки, получаемые при очень быстром загружении (несколько секунд от начала загружения до разрушения образца). Зависимость между напряжениями и деформациями в этом случае близка к прямолинейной;

б) кратковременные деформации, соответствующие обычной в лабораторных условиях длительности испытаний (до одного часа);

в) деформации при длительном загружении в течение многих лет.

3.18. Полная относительная деформация кладки є0 (без учета усадки) может быть выражена формулой

є0 = є el + є g , (6)

где є el — упругая относительная деформация кладки;

є g — относительная деформация при длительном приложении нагрузки.

При этом є g может быть представлена в виде

є g = є 1g + є 2g , (7)

где є1 g — пластическая деформация, возникающая при кратковременной нагрузке (т. е. при нагрузке длительностью до 1 ч);

є2 g — деформация ползучести.

Пластическая деформация є1 g бетонов и кладок на прочном растворе при напряжениях σ £ 0,5 Ru обычно не превышает 15 % упругой деформации. Полная предельная деформация (при t ® ¥ ) є0 обычно в 2-4 раза больше є el .

3.19. Относительные деформации кладки є при кратковременной нагрузке могут определяться при любых напряжениях по формуле

4.1. Расчет каменных и армокаменных конструкций по предельным состояниям первой группы (потеря несущей способности, потеря устойчивости формы, потеря устойчивости положения) производится, как правило, на воздействие расчетных нагрузок.

4.2. Расчет каменных и армокаменных конструкций незаконченных зданий и сооружений производится на воздействие нормативной ветровой нагрузки, а для других нагрузок принимаются их расчетные значения.

4.3. Влияние длительного приложения нагрузки на прочность каменной кладки учитывается при назначении расчетных сопротивлений п.[3.11г] и расчете гибких элементов по указаниям пп. [4.1 и 4.7].

4.4. Сцепление раствора с кирпичом и камнем отличается большой изменчивостью и зависит от многих случайных величин. Поэтому расчет неармированных каменных конструкций производится без учета сопротивления кладки растяжению и изгибу по неперевязанным сечениям (например, по горизонтальным швам), за исключением случаев расчета на сейсмические нагрузки.

4.5. Расчет каменных конструкций на внецентренное сжатие производится без учета сопротивления растянутой зоны сечения. При больших эксцентриситетах, см. п. [4.8], производится дополнительная проверка сечения по образованию и раскрытию трещин; в этом случае условно учитывается сопротивление кладки растяжению по неперевязанному сечению как косвенная характеристика возможного раскрытия трещин.

4.6. Сопротивление кладки растяжению по неперевязанному сечению учитывается при расчете кладки на сейсмические воздействия. В этом случае при выполнении кладки должны соблюдаться специальные правила, повышающие надежность сцепления в соответствии со СНиП II-7-81. Прочность сцепления проверяется при этом контрольными испытаниями в лабораторных и натурных условиях.

4.7. Расчет элементов неармированных каменных конструкций при центральном и внецентренном сжатии производится по указаниям и формулам, приведенным в пп. [4.1-4.11].

При назначении расчетной высоты стены, если ее опорами являются перекрытия и примыкающие к ней поперечные стены, разрешается учитывать опирание стены по контуру (по трем или четырем сторонам), при выполнении следующих условий:

а) по четырем сторонам, если стена ослаблена проемами не более чем на 40 % как по вертикальному, так и по горизонтальному сечению. При ослаблении вертикального сечения более чем на 40%, но менее чем на 60 % разрешается учитывать опирание по четырем сторонам, при условии компенсации дополнительного (сверх 40 %) ослабления кладки — горизонтальными железобетонными поясами с жесткостью, равной жесткости пояса кладки высотой На — 0,4Н, где На — высота проема. Закрепление по четырем сторонам разрешается учитывать, если m = H : l ³ 0,5 ( l длина и H — высота участка стены, определяемая по указаниям п. 4.8);

б) если стена ослаблена проемами более, чем это указано в подп. «а», или опирается по трем сторонам вместе с тем m = H : l ³ 1, разрешается учитывать опирание стены по трем сторонам.

К случаям опирания стены по трем сторонам относятся, например:

участок стены от места примыкания внутренней стены к наружной до ближайшего дверного проема;

вертикальные участки самонесущей стены промышленного или общественного здания, примыкающей и закрепленной связями к поперечной раме железобетонного или металлического каркаса;

в) если связь между продольными и поперечными стенами осуществляется только перевязкой кладки, то опирание стены по трем или четырем сторонам разрешается учитывать при условии, если разница в напряжениях этих стен, определяемая без учета перераспределения напряжений между ними, не превышает 30 % расчетного сопротивления сжатию кладки (без учета сетчатого армирования, если оно имеется). При большей разнице в напряжениях стены следует соединять железобетонными или защищенными от коррозии металлическими связями не менее чем в трех уровнях по высоте этажа. В каркасных зданиях учет опирания стен по контуру разрешается при условии, если стена надежно связана со стойками и верхним ригелем каркаса.

Расчетная высота стен l 0 c , если перекрытие (или другая горизонтальная конструкция) может рассматриваться как неподвижная в горизонтальном направлении опора стены с учетом опирания по контуру, определяется в зависимости от отношения m = Н: l из условия l 0 c =1,2 l 0 / m Ö K £ l 0 , где Н — высота этажа; l — длина участка стены; l 0 — расчетная высота стены, принимаемая по п. [4.3] без учета опирания стены по боковым граням.

Величины K при закреплении участка стены по четырем сторонам равны:

m =Н: l 0,5 0,6 0,7 0,8 0,9 1 и более

K 6,25 5,14 4,52 4,2 4,08 4

Величины K при закреплении участка стены по трем сторонам равны:

m =Н: l 1 1,2 1,4 1,6 1,8 2 2,5 3 4 5 и более

K 1,44 1,14 0,95 0,84 0,76 0,7 0,61 0,56 0,52 0,5

4.8. Указанное в п. [4.3а] шарнирное опирание принимается в зданиях с неподвижными жесткими опорами, см. п. [6.7], при опирании на стену перекрытий без заделки в кладку опорных участков плит, настилов, балок, прогонов и т. п., а также при деревянных перекрытиях независимо от заделки их на опорных участках.

Величина H при железобетонных сборных или монолитных перекрытиях, заделанных на опорах в кладку, принимается равной высоте этажа за вычетом толщины железобетонной плиты, настила или панели перекрытия. В остальных случаях H принимается равной высоте этажа.

В одноэтажных зданиях за нижнюю опору принимается уровень отмостки или пола, если он конструктивно связан со стеной или находится ниже уровня земли.

4.9. Если в стене или столбе имеются горизонтальные или наклонные борозды (одна или две с обеих сторон элемента в одном сечении), не превышающие в сумме по глубине 1/3 толщины стены, а по высоте — 1/10 высоты этажа, то при определении гибкости элемента следует приближенно принимать условную высоту этажа H 1 = 1,1 H . Наличие этих борозд может не учитываться при определении j , если они расположены в уровне междуэтажного перекрытия (в зданиях с неподвижными опорами).

Если борозды имеют большую указанных глубину или высоту, при определении гибкости принимается толщина стены в месте ее ослабления. При расчете ослабленного сечения на внецентренное сжатие эксцентриситет принимается относительно оси ослабленного сечения.

4.11. Расчет сечений при смятии (местном сжатии) следует производить на нагрузки, приложенные к части площади сечения (при опирании на кладку ферм, балок, прогонов, перемычек, панелей перекрытий, колонн и др.).

Несущая способность кладки при смятии определяется с учетом характера распределения давления по площади смятия.

Расчет на смятие следует производить с учетом возможного опирания конструктивных элементов (балок, лестничных маршей и др.) в процессе возведения здания на свежую или оттаивающую зимнюю кладку.

4.12. Расчет сечений при смятии производится по указаниям и формулам пп. [4.13-4.17]. Конструктивные требования к участкам кладки, загруженным местными нагрузками, приведены в пп. [6.40- 6.43].

Кроме расчета на смятие опорные узлы должны быть рассчитаны также на центральное сжатие по указаниям пп. [6.44 и 6.45].

4.13. При необходимости повышения несущей способности опорного участка кладки при смятии могут применяться следующие конструктивные мероприятия:

а) сетчатое армирование опорного участка кладки, см. пп. [4.30 и 4.31], а также пп. 5.12-5.17;

б) опорные распределительные плиты;

в) распределительные пояса при покрытиях больших пролетов, особенно в зданиях с массовым скоплением людей (кинотеатры, залы клубов, спортзалы и т. п.);

г) устройство пилястр;

д) комплексные конструкции (железобетонные элементы, забетонированные в кирпичную или каменную кладку);

е) выполнение из полнотелого кирпича верхних 4-5 рядов кладки в местах опирания элементов на кладку.

4.14. При местных краевых нагрузках, превышающих 80 % расчетной несущей способности кладки при смятии, следует под элементом, создающим местную нагрузку, усиливать кладку сетчатым армированием. Сетки должны иметь ячейки размером не более 100 ´ 100 мм и диаметр стержней не менее 3 мм.

В местах приложения местных нагрузок, в случаях, когда усиление кладки сетчатым армированием является недостаточным, следует предусматривать укладку распределительных плит толщиной, кратной толщине рядов кладки, но не менее 14 см, армированных по расчету двумя сетками с общим количеством арматуры не менее 0,5% в каждом направлении.

При краевом опорном давлении однопролетных балок, прогонов, ферм и т. п. более 100 кН укладка опорных распределительных плит (или поясов) является обязательной также и в том случае, если это не требуется по расчету. При таких нагрузках толщину распределительных плит следует принимать не менее 22 см.

4.15. Расчет кладки на смятие под опорами свободно лежащих изгибаемых элементов (балок, прогонов и т. п.), см. п. [4.17], производится в зависимости от фактической длины опоры а1, и полезной длины а0, черт. 2. Эпюра напряжений под концом балки принимается по трапеции (при а10) или по треугольнику (при а1 ³ а0). Допускается также приближенно принимать треугольную эпюру с основанием а01 , если длина опорного конца балки меньше ее высоты.

Пособие по проектированию автопарковок

4.29. Расчет изгибаемых и центрально растянутых неармированных элементов, а также расчет неармированной кладки на срез производятся по указаниям и формулам, приведенным в пп. [4.18-4.20].

МНОГОСЛОЙНЫЕ СТЕНЫ

4.30. Проектирование многослойных стен производится по пп. [4.21-4.29] и [6.30-6.31]. Многослойные стены состоят из конструктивных, облицовочных и теплоизоляционных слоев, соединенных жесткими или гибкими связями.

4.31. В двухслойных стенах при жесткой связи слоев эксцентриситет продольной силы, направленный в сторону теплоизоляционного слоя, не должен превышать 0,5у.

4.32. Трехслойные стены с засылками или заполнением бетоном марки ниже 10 и двухслойные с утеплителем марки 15 и ниже рассчитываются по сечению кладки без учета несущей способности утеплителя.

4.33. Расчет и проектирование стен с облицовками производятся по указаниям, приведенным в пп. [4.28 и 4.29] и[6.32-6.34], а также в пп. 7.122- 7.162.

4.34. При расчете стен в процессе их возведения, а также сооружений, не имеющих верхней горизонтальной опоры (например, промышленных дымовых труб, подпорных стен и т. п.), кроме расчета на прочность и трещиностойкость необходима проверка на устойчивость положения стены или сооружения. Это относится к сечениям, в которых не могут быть восприняты растягивающие усилия, как, например, в уровне опирания фундамента на грунт, стены — на гидроизоляционный слой и т. п.

Цель расчета — предупредить опрокидывание конструкций при малой продольной и значительной поперечной силе. В этом случае опрокидывание может произойти при обмятии или незначительном выкрашивании одной лишь кромки сечения.

Устойчивость положения стены обеспечивается при условии, если равнодействующая горизонтальных и вертикальных сил находится в пределах сечения на достаточном расстоянии от его сжатого края, т. е. при ограничении величины эксцентриситета.

3.10. Каркасы одноэтажных производственных зданий с размерами по п. 1.1 в поперечном направлении рекомендуется проектировать, как правило, по конструктивной схеме в виде стоек, защемленных в фундаментах и шарнирно сопряженных с ригелями покрытия.

В зданиях со стальным каркасом с высотами большими, чем предусмотрено унифицированными габаритными схемами, сопряжения колонн с ригелями покрытия рекомендуется выполнять в виде жестких рамных узлов с целью ограничения деформаций от сейсмических нагрузок. В продольном направлении каркасы могут проектироваться по той же конструктивной схеме, как и в поперечном направлении или по схеме с установкой стальных связей между стойками.

Примечание. Проектирование зданий с пространственными конструкциями покрытий типа структур следует выполнять в соответствии с Руководством по проектированию структурных конструкций.

3.11. Расчет каркасов одноэтажных зданий (отсеков) на горизонтальные сейсмические нагрузки рекомендуется выполнять на ЭВМ с учетом их пространственной работы.

При расчете на сейсмические нагрузки в поперечном направлении в качестве эквивалентной динамической модели каркаса может приниматься расчетная схема, состоящая из поперечных рам и фахверковых стоек (в случае их защемления в фундаментах), соединенных в уровне их верха стержнями бесконечной жесткости с условной продольной балкой, жесткость которой (EIус) эквивалентна суммарной горизонтальной жесткости диска покрытия в поперечном направлении здания (рис. 6, а). Вертикальные нагрузки в расчетной схеме принимаются сосредоточенными в центрах приведения в соответствии с указаниями п. 3.12.

При покрытиях из сборных железобетонных плит (см. пп. 3.28÷3.30) или из профилированного стального настила, жестко связанного с прогонами (см. п. 3.45), допускается принимать диск покрытия бесконечно жестким в поперечном направлении здания. В этом случае, в целях уменьшения вычислительных работ, поперечные рамы, кроме рассчитываемой, могут быть заменены в расчетной схеме каркаса одной эквивалентной стойкой, а все фахверковые стойки — другой эквивалентной стойкой (рис. 6, б).

При расчете на сейсмические нагрузки в продольном направлении в качестве эквивалентной динамической модели каркаса при наличии вертикальных связей между колоннами может приниматься расчетная схема, состоящая из всех связевых панелей и колонн (для стальных каркасов допускается жесткость колонн не учитывать, рис. 6, в), а при отсутствии связей — расчетная схема состоит из продольных рам и фахверковых стоек, если эти стойки защемлены в фундаментах.

3.25. Жесткость сечения внецентренно сжатых и изгибаемых железобетонных элементов при определении сейсмических нагрузок принимается равной EбI, где Eб — начальный модуль упругости бетона при сжатии и растяжении; I — момент инерции полного бетонного сечения. При этом расчет каркаса на особое сочетание нагрузок допускается выполнять по деформированной схеме с учетом неупругих деформаций бетона и арматуры и наличия трещин.

3.26. Сборные железобетонные стропильные и подстропильные конструкции следует, как правило, применять в зданиях с расчетной сейсмичностью 7 баллов с пролетами, аналогичными пролетам соответствующих зданий, возводимых в несейсмических районах, а в зданиях с расчетной сейсмичностью 8 и 9 баллов — с пролетами соответственно до 18 и 12 м включительно. В зданиях с расчетной сейсмичностью 8 баллов при соответствующем обосновании допускается применять стропильные конструкции пролетом 24 м.

Конструктивные решения покрытий зданий с железобетонными несущими конструкциями следует применять при расчетной сейсмичности 7 баллов — без подстропильных конструкций и с ними; при расчетной сейсмичности здания 8 баллов предпочтение следует отдавать покрытиям без подстропильных конструкций (с шагом колонн и стропильных конструкций 6 и 12 м); при расчетной сейсмичности 9 баллов — без применения подстропильных конструкций (с шагом колонн и стропильных конструкций, как правило, 6 м).

3.27. Покрытия зданий из сборных железобетонных плит следует выполнять, как правило, из типовых конструкций, разработанных для сейсмических районов. При этом учитываются указания пп. 3.28-3.39.

3.28. Для восприятия горизонтальных сейсмических нагрузок в поперечном направлении здания следует выполнять замоноличивание плит покрытия в соответствии с указаниями пп. 3.29 и 3.30.

В зданиях (отсеках) бесфонарных или с зенитными фонарями с расчетной сейсмичностью 7 и 8 баллов и в зданиях (отсеках) с фонарными надстройками при расчетной сейсмичности 7 баллов горизонтальная сейсмическая нагрузка, действующая на плиты покрытия в продольном направлении здания (отсека), передается на продольные ряды колонн диском покрытия, образованным замоноличенными плитами в соответствии с пп. 3.29 и 3.30. Кроме замоноличивания плит в зданиях с фонарными надстройками при расчетной сейсмичности 8 баллов плиты, расположенные у торцов здания (отсека) и поперечных антисейсмических швов (кроме плит, расположенных по продольным координационным осям), на опорах соединяются между собой при помощи стальных элементов, привариваемых к закладным изделиям в полках плит, а в зданиях с сейсмичностью 9 баллов указанные стальные элементы устанавливаются по всем опорам плит (рис. 14 и 15). Сечение соединительных элементов и стержней соединительной арматуры дополнительных закладных изделий (рис. 16) в плитах определяется по расчету на растягивающие усилия, возникающие в покрытии от действия сейсмических нагрузок в продольном направлении здания. При этом покрытие пролета зданий допускается рассматривать как балку-стенку, свободно опертую и загруженную равномерно распределенной по площади сейсмической нагрузкой. Исходя из этих условий, площадь сечения соединительных элементов и стержней соединительной арматуры Аа закладных изделий в плитах покрытия определяется по формуле

ЖИЛЫЕ ЗДАНИЯ . ВЕНТИЛЯЦИЯ

3.61. Каркасы многоэтажных зданий для сейсмических районов рекомендуется проектировать по следующим конструктивным схемам:

рамной со всеми жесткими узлами сопряжений ригелей (поперечных и продольных) с колоннами;

связевой с вертикальными устоями жесткости в виде железобетонных диафрагм, стальных связей или рам при шарнирном опирании ригелей и плит;

комбинированной, в которой в одном направлении здания принимается рамная схема, а в другом — связевая.

Примечание. При числе этажей более 5 допускается при соответствующем обосновании вводить в рамные конструктивные схемы со всеми жесткими узлами сопряжении ригелей с колоннами вертикальные устои жесткости — железобетонные диафрагмы или стальные связи.

3.62. Вертикальные устои жесткости, воспринимающие горизонтальную нагрузку, должны быть непрерывными по всей высоте здания и располагаться равномерно и симметрично относительно центра тяжести здания.

3.63. При выборе конструктивных схем каркаса предпочтение следует отдавать схемам, в которых зоны пластичности могут возникать в горизонтальных элементах каркаса.

3.64. Каркасы зданий массового применения должны проектироваться, как правило, из железобетона с применением сборных конструкций, предназначенных для использования в сейсмических районах. Продольные ригели могут выполняться монолитными железобетонными (рис. 48, а),

Каркасы зданий массового применения из стальных конструкций следует проектировать в тех случаях, когда не представляется возможным использование железобетонных конструкций или когда применение стальных каркасов допускается действующими «Техническими правилами по экономному расходованию основных строительных материалов».

3.65. Перекрытия и покрытия, как правило, должны проектироваться из сборных железобетонных плит и образовывать неизменяемый жесткий диск, способный передавать горизонтальные сейсмические нагрузки на вертикальные несущие элементы каркаса здания(колонны, стальные связи и др.) и обеспечивать их совместную работу (см. п. 3.74).

3.72. Каркасы многоэтажных зданий рекомендуется проектировать по рамной схеме с жесткими узлами сопряжений ригелей с колоннами. В зданиях с балочными перекрытиями с расчетной сейсмичностью до 8 баллов может использоваться комбинированная конструктивная схема (рамная схема в поперечном направлении и связевая в продольном направлении). Диафрагмы жесткости в связевых конструктивных или рамных схемах с жесткими узлами (см. п. 3.61) рекомендуется выполнять из сборных железобетонных элементов, предусматривая их крепление к несущим конструкциям каркаса.

3.73. Сейсмические нагрузки на здания, определяемые согласно п. 3.71, вычисляются при жесткости сечений железобетонных элементов каркаса по п. 3.25. При расчете рам каркаса на особое сочетание нагрузок в предположении упругого деформирования конструкций в ригелях без предварительного напряжения арматуры перераспределение опорных моментов в соответствии с «Руководством по расчету статически неопределимых железобетонных конструкций» (М., Стройиздат, 1975) не производится, а в предварительно напряженных ригелях допускается перераспределять моменты от вертикальных нагрузок с опорных сечений в пролетные с уменьшением опорных моментов согласно расчета, но не более 20 %. Перераспределенные моменты от вертикальных нагрузок суммируются с моментами от сейсмических усилий. Расчет рам каркаса многоэтажных зданий с расчетной сейсмичностью 8 и 9 баллов на особое сочетание нагрузок рекомендуется выполнять по деформированной схеме, принимая во внимание неупругие деформации материалов и наличие трещин.

Примечание. Расчет рам каркаса с жесткими узлами рекомендуется выполнять с учетом участков повышенной жесткости в местах сопряжения ригелей и колонн. Размеры участков повышенной жесткости принимаются в зависимости от типа стыка в соответствии с указаниями, приведенными в примере 3.

3.74. Для замоноличивания диска перекрытия или покрытия необходимо:

а) приварить закладные изделия плит к закладным изделиям ригелей или к стальным столикам колонн и тщательно заполнить швы между всеми элементами перекрытий или покрытий бетоном марки не ниже М 200 на мелком щебне или гравии с применением вибрирования при укладке;

б) устанавливать в первую очередь и приваривать в четырех углах сборные плиты, примыкающие к продольным монолитным ригелям или монолитным участкам, примыкающим к сборным ригелям, или связевые плиты-распорки между колоннами по продольным осям здания; следующие за ними плиты приварить в трех углах (при опирании по верху ригеля) или в двух углах (при опирании плит на полки ригелей); средняя плита в каждой ячейке каркаса может укладываться без приварки (рис. 48 и 49);

в) предусматривать в сборных плитах перекрытий пазы на продольных ребрах для образования бетонных шпонок, а в зданиях с расчетной сейсмичностью 9 баллов торцы смежных продольных ребер плит, укладываемых поверх ригелей соединять между собой у антисейсмического шва или торцевой стены при помощи соединительных элементов, привариваемых к закладным изделиям плит.

При установке между продольными ригелями или плитами-распорками плоских многопустотных панелей следует обеспечить устройство между плитами, панелями и ригелями связей, воспринимающих усилия, возникающие в перекрытии. Для этого, кроме заделки швов и устройства шпоночной поверхности, описанных в подпунктах «а» и «в» настоящего пункта, следует предусмотреть установку в швах между панелями соединительных изделий, проходящих над поперечными ригелями, либо привариваемых к закладным изделиям ригелей (возможны и другие способы соединения плит между собой в местах их опирания на поперечные ригели).

Связевые плиты-распорки следует соединить между собой или с ригелями поверху соединительными элементами, привариваемыми к закладным изделиям конструкций. Межколонные (связевые) плиты или ригели, располагаемые по осям колонн здания (отсека), должны быть непрерывными на всем протяжении диска перекрытия или покрытия.

При необходимости устройства в перекрытиях проемов во избежание нарушения жесткости диска перекрытия количество проемов должно назначаться минимальным, а размеры проемов не должны превышать размеров в свету между поперечными и между продольными ригелями (или межколонными плитами).

Мероприятия по созданию жесткости перекрытий в ячейках каркаса, в которых устраиваются проемы, должны предусматриваться в проектах зданий.

3.75. Элементы сборных колонн многоэтажных каркасных зданий по возможности следует укрупнять на несколько этажей. Стыки сборных колонн необходимо располагать в зоне с меньшими изгибающими моментами.

3.81. Каркасы зданий рекомендуется проектировать по конструктивным схемам, указанным в п. 3.61; для протяженных в план зданий предпочтение следует отдавать каркасам, решаемым по комбинированной схеме: в поперечном направлении рамная схема, в продольном — связевая с вертикальными стальными связями или железобетонными диафрагмами жесткости.

3.82. Перекрытия и покрытия по стальным несущим конструкциям следует проектировать в соответствии с пп. 3.65; 3.66; 3.68 и 3.74.

При этом в перекрытиях с опиранием плит на полки стальных ригелей в пределах их высоты пространство, образующееся между ригелями и торцами плит, должно быть также заполнено бетоном на высоту плит с предварительной укладкой вдоль ригелей сварных сеток, препятствующих выкалыванию бетона (рис. 60). Сетки изготовляются из холоднотянутой проволоки диаметром 3 мм с шагом продольных стержней 100 мм, поперечных 250 мм. При проектировании перекрытий данного типа необходимо предусмотреть зазоры между торцами плит и верхними поясами ригелей шириной не менее 50 мм и расположение верха плит выше верха ригелей не менее чем на 30 мм (рис. 61, а).

3.83. При проектировании стальных каркасов в ригелях, диафрагмах, опорных траверсах колонн рекомендуется предусматривать определенные участки, а в стальных связях специальные конструктивные элементы, предназначенные для работы в условиях возможного развития значительных неупругих деформаций. Эти участки следует назначать в наиболее напряженных сечениях конструкций и они должны быть достаточно удалены от элементов и сечений, подверженных хрупкому разрушению или потери устойчивости, и в них следует обеспечивать по возможности более протяженные и геометрически плавные формы. Принцип формообразования конструкций в местах, где планируется возникновение пластических шарниров, поясняется на примере соединения ригеля с колонной.

Опорные сечения ригелей рамных каркасов рекомендуется развивать до таких размеров, чтобы в момент возникновения пластических шарниров в месте перехода от основного сечения к развитому опорному сечению (сечении 11 рис. 62) напряжения в области сварных соединений не превышали расчетных сопротивлений. С появлением пластического шарнира рост усилий в опорной части ригеля прекращается и тем самым предохраняются сварные соединения ригеля со стойкой от хрупкого разрушения.

Развитие опорных сечений ригелей рекомендуется осуществлять за счет увеличения ширины полок (рис. 63).

Расчет рамных каркасов с учетом развития пластических деформаций в ригелях рекомендуется выполнять в соответствии с «Рекомендациями по расчету металлических рамных каркасов на сейсмические воздействия с учетом образования пластических шарниров» (М., Стройиздат, 1974), при этом должны соблюдаться требования пп. 5.18-5.21 главы СНиП II-23-81.

5.11. Панельные (навесные и самонесущие) стены из легкого бетона на пористых заполнителях, поризованного или ячеистого бетона, а также из железобетонных неутепленных панелей должны крепиться к каркасу в соответствии с п. 3.2, г (рис. 71).

5.12. По высоте навесные стены из бетонных панелей разбиваются на ярусы, между которыми устраиваются горизонтальные антисейсмические швы.

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ СИСТЕМ ВЕНТИЛЯЦИИ ЖИЛЫХ ЗДАНИЙ

2.13(2.5). Нагрузки и воздействия на основания , передаваемые фундаментами сооружений , должны устанавливаться расчетом , как правило , исходя из рассмотрения совместной работы сооружения и основания.

Учитываемые при этом нагрузки и воздействия на сооружение или отдельные его элементы , коэффициенты надежности по нагрузке , а также возможные сочетания нагрузок должны приниматься согласно требованиям СНиП по нагрузкам и воздействиям.

Нагрузки на основание допускается определять без учета их перераспределения надфундаментной конструкцией при расчете :

а) оснований зданий и сооружений III класса ; 1

б) общей устойчивости массива грунта основания совместно с сооружением ;

в) средних значений деформаций основания ;

г) деформаций оснований в стадии привязки типового проекта к местным грунтовым условиям.

1 Здесь и далее класс ответственности зданий и сооружений принят согласно Правилам учета степени ответственности зданий и сооружений при проектировании конструкций , утвержденным Госстроем СССР постановлением от 19 марта 1981 г. № 41.

2.14. При проектировании оснований следует учитывать , что сооружение и основание находятся в тесном взаимодействии. Под влиянием нагрузок от фундаментов основание деформируется , а это в свою очередь вызывает перераспределение нагрузок за счет включения в работу надфундаментных конструкций. Характер и степень перераспределения нагрузок на основание , а следовательно , и дополнительные усилия в конструкциях сооружения зависят от вида , состояния и свойств грунтов , характера их напластования , статистической схемы сооружения , его пространственной жесткости и многих других факторов.

2.15. Основными характеристиками нагрузок являются их нормативные значения , устанавливаемые СНиП по нагрузкам и воздействиям. Все расчеты оснований должны производиться на расчетные значения нагрузок , которые определяются как произведение нормативных нагрузок на коэффициент надежности по нагрузке g f , учитывающий возможное отклонение нагрузок в неблагоприятную сторону от нормативных значений и устанавливаемый в зависимости от группы предельного состояния.

Коэффициент надежности по нагрузке g f принимается при расчете оснований :

по первой группе предельных состояний (по несущей способности) — по указаниям СНиП по нагрузкам и воздействиям ;

по второй группе предельных состояний (по деформациям) — равным единице.

2.16. В зависимости от продолжительности действия нагрузки подразделяются на постоянные и временные. Постоянными считаются нагрузки , которые при строительстве и эксплуатации сооружения действуют постоянно (собственный вес конструкций и грунтов , горное давление и т.п.). Временными считаются нагрузки , которые в отдельные периоды строительства и эксплуатации могут отсутствовать.

2.17. Временные нагрузки в свою очередь подразделяются на :

длительные (например , вес стационарного оборудования , нагрузки на перекрытиях в складских помещениях , зернохранилищах , библиотеках и т.п.) ;

кратковременные , которые могут действовать лишь в отдельные периоды времени (вес людей и ремонтных материалов в зонах обслуживания и ремонта ; нагрузки , возникающие при изготовлении , перевозке и возведении конструкций ; снеговые , ветровые и гололедные нагрузки и т.п.) ;

особые , возникновение которых возможно лишь в исключительных случаях (сейсмические , аварийные и т.п.).

2.18. В зависимости от состава различаются сочетания нагрузок :

основные , состоящие из постоянных , длительных и кратковременных нагрузок ;

особые , состоящие из постоянных , длительных , возможных кратковре­менных и одной из особых нагрузок.

2.19(2.6). Расчет оснований по деформациям должен производиться на основное сочетание нагрузок ; по несущей способности — на основное со­четание , а при наличии особых нагрузок и воздействий — на основное и особое сочетание.

При этом нагрузки на перекрытия и снеговые нагрузки , которые сог­ласно СНиП по нагрузкам и воздействиям могут относиться как к длитель­ным , так и к кратковременным , при расчете оснований по несущей способности считаются кратковременными , а при расчете по деформациям — длительными. Нагрузки от подвижного подъемно-транспортного обору­дования в обоих случаях считаются кратковременными.

2.20(2.7). В расчетах оснований необходимо учитывать нагрузки от складируемого материала и оборудования , размещаемых вблизи фундаментов.

2.21(2.8). Усилия в конструкциях , вызываемые климатическими темпе­ратурными воздействиями , при расчете оснований по деформациям не должны учитываться , если расстояние между температурно-усадочными швами не превышает значений , указанных в СНиП по проектированию со­ответствующих конструкций.

2.22(2.9). Нагрузки , воздействия , их сочетания и коэффициенты надежности по нагрузке при расчете оснований опор мостов и труб под насыпями должны приниматься в соответствии с требованиями СНиП по проектированию мостов и труб.

2.51(2.11). Характеристики грунтов природного сложения , а также искусственного происхождения должны определяться , как правило , на основе их непосредственных испытаний в полевых или лабораторных условиях с учетом возможного изменения влажности грунтов в процессе строите­льства и эксплуатации сооружений.

2.52. Характеристики грунтов , необходимые для проектирования осно­ваний (модуль деформации Е , удельное сцепление с , угол внутреннего трения j) , определяют , как правило , для природного состояния грунтов.

При проектировании оснований , сложенных не полностью водонасыщенными ( Sr <0 , 8) пылевато-глинистыми грунтами и пылеватыми песками , следует учитывать возможность снижения их прочностных и деформационных характеристик вследствие повышения влажности грунтов в процессе строительства и эксплуатации сооружения.

2.53. Для определения прочностных характеристик ( j и с) грунтов , для которых прогнозируется повышение влажности , образцы грунтов предварительно насыщаются водой до значений влажности , соответствующих прогнозу.

При определении модуля деформации в полевых условиях допускается проводить испытания грунта при природной влажности с последующей корректировкой полученного значения модуля деформации на основе ко­мпрессионных испытаний. Для этого проводятся параллельные компрессионные испытания грунта природной влажности и грунта , предварительно водонасыщенного до требуемого значения влажности. Полученный в лабораторных опытах коэффициент снижения модуля деформации грунта при его дополнительном водонасыщении используется для корректировки полевых данных.

2.54. Наиболее достоверными методами определения деформационных характеристик нескольких грунтов являются полевые их испытания статическими нагрузками в шурфах , дудках или котлованах с помощью плоских горизонтальных штампов площадью 2500-5000 см2 , а также в скважинах или в массиве с помощью винтовой лопасти-штампа площадью 600 см2 , выполняемые в соответствии с действующим ГОСТом. При этом применительно к рассматриваемым в Пособии методами расчета оснований по деформациям эталонным методом определения деформационных характеристик считаются указанные полевые испытания в шурфах , дудках или котлованах. Расчет модуля деформации грунтов по результатам их ис­пытаний с помощью плоского горизонтального штампа и винтовой лопас­ти-штампа проводится по приведенным в действующем ГОСТе формулам.

2.55. Модули деформации песчаных и пылевато-глинистых грунтов , не обладающих резко выраженной анизотропией их свойств в горизонтальном и вертикальном направлениях , могут быть определены их испытани­ями с помощью прессиометров в скважинах и плоских вертикальных шта­мпов (лопастных прессиометров) в скважинах или массиве , выполняемыми в соответствии с действующим ГОСТом с последующей корректировкой получаемых опытных данных. Корректировка этих данных должна осу­ществляться путем их сопоставления с результатами параллельно проводи­мых эталонных испытаний того же грунта с помощью плоских горизонта­льных штампов площадью 2500-5000 см2 , а при затруднительности проведения последних (больше глубины испытаний , водонасыщенные грунты) — с результатами испытаний винтовой лопастью-штампом площадью 600 см2.

Указанные параллельные испытания обязательны при исследованиях грунтов для строительства зданий и сооружений I класса. Для зданий и со­оружений II-III классов допускается корректировать результаты испытаний грунтов прессиометрами или плоскими вертикальными штампами с помощью эмпирических коэффициентов , назначаемых в соответствии с указаниями действующего ГОСТа.

2.56. Модули деформации песчаных и пылевато-глинистых грунтов могут быть определены методом статического зондирования , выполняемым в соответствии с действующим ГОСТом , на основе сопоставления данных зондирования с результатами испытаний тех же грунтов штампами , указанными в п. 2.54. Проведение сопоставительных испытаний обязательно для зданий и сооружений I и II классов. Для зданий и сооружений III класса допускается определять модуль деформации только по данным статического зондирования в зависимости от удельного сопротивления грунта под наконечником зонда qc , используя зависимости :

для печатных грунтов E =3qc ; для суглинков и глин E =7 qc .

2.57. Модули деформации песчаных грунтов (кроме пылеватых водонасыщенных) могут быть определены методом динамического зондирова­ния , выполняемым в соответствии с действующим ГОСТом , на основе сопоставления данных зондирования с результатами испытаний тех же грунтов штампами , указанными в п. 2.54. Проведение сопоставительных испытаний обязательно для зданий и сооружений I и II классов. Для зданий и сооружений III класса допускается определять модуль деформации песчаных грунтов при глубине их залегания до 6 м только по данным динамического зондирования в зависимости от условного динамического сопротивления грунта погружению зонда qd , используя табл. 21.

Таблица 21

Вид песков

Значение модулей деформации Е , МПа (кгс / см2) ,

при qd , МПа (кгс / см2) , равном

2.73(1 прил. 1). Характеристики грунтов , приведенные в табл. 26-28 (1-3 прил. 1) допускается использовать в расчетах оснований сооружений в со­ответствии с указаниями п. 2.72(2.16).

2.74(2 прил. 1). Характеристики песчаных грунтов в табл. 26 (1 прил. 1) относятся к кварцевым пескам с зернами различной окатанности , содержащими не более 20 % полевого шпата и не более 5 % в сумме различных смесей (слюда , глауконит и пр.) , включая органическое вещество , независимо от степени влажности грунтов Sr.

2.75(3 прил. 1). Характеристики пылевато-глинистых грунтов в табл. 27-28 (2-3 прил. 1) относятся к грунтам , содержащим не более 5 % органичес­кого вещества и имеющим степень влажности Sr ³ 0 ,8.

2.76.(4 прил. 1). Для грунтов с промежуточными значениями е , против указанных в таблицах 26-28 (1-3 прил. 1) , допускается определять значения сп , jп и Е по интерполяции.

Если значения е , IL и Sr грунтов выходят за пределы , предусмотренные табл. 26-28 (1-3 прил. 1) , характеристики сп , jп и Е следует определять по данным непосредственных испытаний этих грунтов.

Допускается в запас надежности принимать характеристики сп , jп и Е по соответствующим нижним пределам е , IL и Sr табл. 26-28 (1-3 прил. 1) , если грунты имеют значение е , IL и Sr меньше этих нижних предельных значений.

2.77(5 прил. 1). Для определений значений сп , jп и Е по табл. 26-28 (1-3 прил. 1) используются нормативные значения е , IL и Sr (п. 2.68(2.12)).

Таблица 26(1 прил. 1)

Нормативные значения удельного сцепления сп , кПа (кгс /см2) ,

угла внутреннего трения jп , град , и модуля деформации Е , МПа (кгс /см2) , песчаных грунтов четвертичных отложений

Наименование песчаных

грунтов

Обозна­чения характе­ристик

Характеристики грунтов при

коэффициенте пористости е , равном

грунтов

0,45

0,55

0,65

0,75

Гравелистые

сп

2(0 ,02 )

1(0,01)

и крупные

jп

43

40

38

Е

50(500)

40 (400)

30(300)

Средней

сп

3(0 ,03)

2(0,02)

1(0,01)

крупности

jп

40

38

35

Е

2.78. Подземные воды включают в себя воды зоны аэрации (почвен­ные , болотные , такыров , инфильтрующиеся , воды капиллярной каймы , верховодок , пленочные) и воды зоны насыщения (грунтовые , под- и межмерзлотные , надмерзлотные , межпластовые , трещинные , карстовые и т.д.). При строительном освоении территории и дальнейшей ее эксплуатации воздействию техногенных факторов в основном подвергаются воды зоны аэрации и грунтовые воды и реже — ниже залегающие водоносные горизонты. При этом следует учитывать развитие в данном районе таких неблагоприятных природных и инженерно-геологических процессов , как карст , оползание склонов , подземная суффозия и т.д.

Существенное положение уровня или напора подземных вод и возмо­жность его изменения в период строительства и последующей эксплуатации возводимых зданий и сооружений влияют на выбор типа фундамента и его размеров , а также на выбор водозащитных мероприятий и характер производства строительных работ.

При повышении уровня или напора подземных вод и влажности снижаются и прочностные характеристики глинистых и биогенных грунтов ос­нований , возникает просадка или набухание грунта , увеличивается степень морозной пучинистости и т.д. Все это может привести к дополните­льным деформациям , если здания и сооружения были запроектированы без учета изменений водонасыщения грунтов оснований , как того требуют существующие нормативные документы.

При понижении уровня или напора подземных вод могут также возникать дополнительные осадки пылевато-глинистых , биогенных и песчаных грунтов. Изменения уровня подземных вод часто ведут к формированию или интенсификации инженерно-геологических процессов (карст , оползни , суффозия и т.д.).

2.79(2.17). При проектировании оснований должна учитываться возможность изменения гидрогеологических условий площадки в процессе строительства и эксплуатации сооружения , а именно :

наличие или возможность образования верховодки ;

естественные сезонные и многолетние колебания уровня подземных вод ;

возможное техногенное изменение уровня подземных вод ;

степень агрессивности подземных вод по отношению к материалам подземных конструкций и коррозионную активность грунтов на основе данных инженерных изысканий с учетом технологических особенностей производства.

2.80. Проведение вертикальной планировки , разработка котлованов , траншей и т.д. и последующая эксплуатация зданий , сооружений и застроенной территории в целом (в том числе эксплуатация систем водоснабжения и водоотведения) вызывают изменения гидрогеологических условий , что необходимо учитывать при проведении инженерных изысканий и про­ектирования.

Застроенная территория (населенный пункт или промышленное предп­риятие) является многокомпонентной и динамичной системой , постоянно изменяющейся как в процессе строительства и реконструкции зданий и сооружений , так и в процессе их эксплуатации. Поэтому выполнение количественных прогнозов , особенно долгосрочных (более одного года) , из­менение гидрогеологических условий с необходимой точностью и надежностью , с необходимым учетом трудно предсказуемых возможных изменений условий питания и разгрузки подземных вод (например , фильтрации утечек из коммуникаций и вод поверхностного стока , изменения есте­ственной дренированности территории и т.д.) , в настоящее время , как пра­вило , является проблематичным. Поэтому выполняемые прогнозы , особенно для отдельных зданий (сооружений) , являются в основном оценочными , т.е. носят характер прогнозных оценок 1. Это обстоятельство усугу­бляется отсутствием на большинстве застроенных территорий продолжительность наблюдений , причем для незастроенных территорий продолжительность наблюдений должна быть не менее года , а для застроенных — зна­чительно большей (3-5 и более лет).

1 Прогнозная оценка — это прогноз без выполнения верификации , т.е. когда определение точности и достоверности прогноза невозможно или последние не отвечают требуемым.

2.81. При проектировании оснований отдельных зданий и сооружений учет изменений гидрогеологических условий площадки строительства дол­жен проводиться на основе ранее выполненных прогнозных оценок для более значительных , чем рассматриваемая площадь , участков территории (например , для проектирования системы инженерной защиты от опасных геологических процессов) , ограниченных реками , ручьями и др. Естестве­нными границами , на которых принимаются соответствующие граничные условия. Гидрогеологические условия конкретной площади (например , формирование режима подземных вод) зависит не только от факторов , действующих непосредственно на данном участке территории. При отсутствии ранее выполненных прогнозных оценок , последние для отдельного здания или комплекса сооружений могут выполняться , учитывая незначительные объемы и малые сроки проведения инженерных изысканий , методом конкретной аналогии на основе имеющегося опыта для условий (природных и техногенных) конкретного объекта — эталона строительства и эксплуатации , для которого исследуемый объект является аналогом , или методом обобщенной аналогии по материалам , приведенным в пп. 2.98-2.104.

ЖИЛЫЕ ЗДАНИЯ . ПРОТИВОДЫМНАЯ ВЕНТИЛЯЦИЯ

2.156(2.34). Целью расчета оснований по деформациям является огра­ничение абсолютных или относительных перемещений фундаментов и на­дфундаментных конструкций такими пределами, при которых гарантиру­ется нормальная эксплуатация сооружения и не снижается его долговеч­ность (вследствие появления недопустимых осадок, подъемов, кренов, из­менений проектных уровней и положений конструкций, расстройств их соединений и т. п.). При этом имеется в виду, что прочность и трещинос­тойкость фундаментов и надфундаментных конструкции проверены расчетом, учитывающим усилия, которые возникают при взаимодействии со­оружения с основанием.

Примечание. При проектировании сооружений, расположенных в непосредственной близости от существующих, необходимо учитывать до­полнительные деформации оснований существующих сооружений от на­грузок проектируемых сооружений.

2.157(2.35). Деформации основания подразделяются на:

осадки — деформации, происходящие в результате уплотнения грунта под воздействием внешних нагрузок и в отдельных случаях собственного веса грунта, не сопровождающиеся коренным изменением его структуры;

просадки — деформации, происходящие в результате уплотнения и, как правило, коренного изменения структуры грунта под воздействием как внешних нагрузок и собственного веса грунта, так и дополнительных фак­торов, таких, как, например, замачивание просадочного грунта, оттаива­ние ледовых прослоек в замерзшем грунте и т. п.;

подъемы и осадки — деформации, связанные с изменением объема некоторых грунтов при изменении их влажности или воздействии химичес ­ких веществ (набухание и усадка) и при замерзании воды и оттаивании льда в порах грунта (морозное пучение и оттаивание грунта);

оседания — деформации земной поверхности, вызываемые разработкой полезных ископаемых, изменением гидрогеологических условий, пониже ­нием уровня подземных вод, карстово-суффозионными процессами и т.п.;

горизонтальные перемещения — деформации, связанные с действием горизонтальных нагрузок на основание (фундаменты распорных систем, подпорные стены и т. д.) или со значительными вертикальными перемеще ­ниями поверхности при оседаниях, просадках грунтов от собственного ве ­са и т. п.

2.158(2.36). Деформации основания в зависимости от причин возникновения подразделяются на два вида:

первый — деформации от внешней нагрузки на основание (осадки, про ­садки, горизонтальные перемещения);

второй — деформации, не связанные с внешней нагрузкой на основание и проявляющиеся в виде вертикальных и горизонтальных перемещений поверхности основания (оседания, просадки грунтов от собственного ве ­са, подъемы и т. п.).

2.159. Деформации основания первого вида при прочих равных условиях вызывают тем большие усилия в конструкциях сооружения, чем бо ­льше сжимаемость грунтов, при деформациях второго вида — усилия уме ­ньшаются с увеличением сжимаемости грунтов.

Указанное в п. 2.158(2.36) подразделение деформаций основания показывает не только специфику, но и сходство воздействии деформаций осно ­вания на конструкции сооружений, возводимых в различных грунтовых условиях, и поэтому может быть использовано для унификации проектирования.

2.160. Для конструкций сооружений наиболее опасны неравномер ­ные деформации основания. Основными причинами их являются:

а) для. деформаций основания первого вида:

неравномерность сжимаемости основания из-за неоднородности грунтов, выклинивания и непараллельности залегания отдельных слоев, наличия линз, прослоев и других включений, неравномерного уплотнения гру­нтов, в том числе искусственных подушек и т.п.;

особенность деформирования основания как сплошной среды, проявляющаяся в том, что осадки основания происходят не только в пределах, но и за пределами площади загружения (указанной особенностью основания, в особенности сложенного сильно сжимаемыми грунтами, объясня­ются многие случаи повреждений существующих сооружений при возве­дении в непосредственной близости от них- новых сооружений);

неравномерное увлажнение грунтов, в частности просадочных и набухающих;

различие нагрузок на отдельные фундаменты, их размеров в плане и глубины заложения;

неравномерное распределение нагрузок на полы производственных зданий, а также загрузка территории в непосредственной близости от соо­ружения;

нарушения правил производства строительных работ, приводящие к ухудшению свойств грунтов, ошибки, допущенные при инженерно-геоло­гических изысканиях и проектировании оснований и фундаментов, а также нарушение предусмотренных проектом условий эксплуатации сооруже­ния;

б) для деформаций основания второго вида:

повышение влажности просадочных грунтов в грунтовых условиях II типа; подземные горные выработки; изменение температурно-влажност­ного режима некоторых грунтов (например, набухающих), изменение гид­рогеологических условий площадки; влияние динамических воздействий, например, от городского транспорта и т. д.

Таким образом, причинами неравномерных деформаций основания, которые необходимо учитывать при проектировании, могут быть. не только инженерно-геологические и гидрогеологические факторы, но и конструктивно-технологические особенности проектируемых сооружений, спо­собы производства работ по устройству оснований и фундаментов, осо­бенности эксплуатации сооружений.

2.161(2.37). Расчет оснований по деформациям должен производить­ся из условия совместной работы сооружения и основания.

Деформации основания допускается определять без учета совместной работы сооружения и основания в случаях, оговоренных в п. 2.13(2.5).

1.1. Настоящее Пособие подготовлено с целью оказания помощи проектировщикам, разрабатывающим проекты стоянок легковых автомобилей (автостоянок) в г. Москве.

1.2. При подготовке выпуска 1 Пособия учтен опыт проектирования автостоянок в Москве и применения МГСН 5.01-94* в 1994-1997 гг. по данным Мосгосэкспертизы. В состав выпуска 1 Пособия включены разъяснения и рекомендации, способствующие решению наиболее часто встречающихся проблем, связанных с разработкой планировки и противопожарной защиты автостоянок. В выпуске 1 Пособия приводятся примеры планировочных решений автостоянок, согласованных Мосгоэкспертизой и принятых к строительству. Учитывая широкий круг проблем, возникающий при проектировании и строительстве автостоянок в Москве, намечена подготовка нескольких выпусков Пособия. В очередной выпуск Пособия будут включены вопросы вентиляции, шумозащиты и другие проблемы, санитарной защиты при проектиро­вании автостоянок.

1.3. Разъяснения и рекомендации, вошедшие в настоящее Пособие и учитывающие сложившийся опыт проектирования автостоянок, не следует считать нормативными требованиями. Проектировщики вправе принимать другие решения, отвечающие действующим нормам.

1.4. Нормативные документы, применяемые при проектировании автостоянок :

СНиП 10-01 94 «Система нормативных документов в строитель­стве. Основные положения.»

СНиП 2.07.01-89* «Планировка и застройка городских и сельских поселений».

МГСН 5.01-94* «Стоянки легковых автомобилей».

МГСН-1.01-94 «Временные нормы и правила проектирования планировки и застройки Москвы» (Корректировка и дополнение ВСН 2-85).

МГСН 4.04-94 «Многофункциональные здания и комплексы».

ГОСТ 12.1.004. «Пожарная безопасность. Общие требования».

СНиП 2.04.09-84 «Пожарная автоматика зданий и сооружений».

Пособие 15-91 к СНиП 2. 04.05.-91* «Противодымная защита при пожаре и вентиляция подземных стоянок легковых автомобилей».

СНиП 21-01-97 «Пожарная безопасность зданий и сооружений».

СНиП 2.04.05-91 * «Отопление, вентиляция и кондиционирование».

НПБ 239-97 «Клапаны, противопожарные системы вентиляции зданий и сооружений. Методы испытаний на огнестойкость».

НПБ 240-97 «Воздуховоды. Метод испытаний на огнестой­кость».

ВСН 01-89 (Минавтотранс РСФСР) «Ведомственные строительные нормы. Предприятия по обслуживанию автомобилей».

ОНТП 01-91 (Росавтотранс) «Отраслевые нормы технологического проектирования предприятий автомобильного транспорта».

СНиП 2.04. 01-85* «Водопровод и канализация зданий».

НПБ -110-96 «Перечень зданий, сооружений, помещений и оборудования, подлежащих защите автоматичес­кими установками тушения и обнаружения пожара».

ВСН 62-91* «Проектирование среды жизнедеятельности с у четом потребностей инвалидов и маломобильных групп населения».

ПРЕДИСЛОВИЕ

Настоящее Пособие разработано на основе «Пособия по проектированию земляного полотна автомобильных дорог на слабых грунтах» (к СНиП 2.05.02-85), изданного Стройиздатом в 1989 г.

В Пособии рассмотрены вопросы инженерно-геологических изысканий и проектирования земляного полотна автомобильных дорог на участках распространения слабых грунтов. В новой редакции Пособия уточнены и дополнены некоторые расчетные схемы и расчетный аппарат, необходимые для оценки устойчивости и осадки слабых оснований насыпей, а также для проектирования отдельных конструктивно-технологических мероприятий. Изложены уточненные методики полевых и лабораторных испытаний различных разновидностей слабых грунтов. Все изменения и дополнения выполнены с учетом полученных в последние годы результатов научно-исследовательских работ в этой области, а также с учетом изменений в нормативно-технических документах дорожной отрасли.

Из переработанного Пособия в новую редакцию вошли материалы д-ра техн. наук В.Д.Казарновского, д-ра техн. наук И.Е.Евгеньева, канд. техн. наук А.Г.Полуновского, д-ра техн. наук Э.К.Кузахметовой, д-ра техн. наук В.Н.Яромко, материалы Омского филиала Союздорнии, Тюменского инженерно-строительного института, Московского автомобильно-дорожного института, а также опыт ведущих проектных организаций (Союздорпроекта, Гипротюменьнефтегаза, Ленгипротранса и др.) и строительных организаций (Тюменьдорстроя, Пермдорстроя и др.).

Настоящая редакция Пособия разработана д-ром техн. наук Э.К.Кузахметовой, д-ром техн. наук В.Д.Казарновским и инж. Ю.М.Львовичем при участии инж. Т.Н.Ибрагимовой.

При этом учтены и использованы материалы, представленные д-ром техн. наук А.М.Кулижниковым и д-ром техн. наук В.Н.Яромко.

Учтены также замечания официальных рецензентов: МАДИ ТУ, ГП «Росдорнии», ФГУП «Союздорпроект», ОАО «Центродорстрой» и замечания, присланные неофициальными рецензентами.

Общее научное редактирование выполнено д-ром техн. наук, проф. В.Д.Казарновским и д-ром техн. наук Э.К.Кузахметовой.

1.14. В соответствии со СНиП 2.05.02-85 при проектировании земляного полотна на участках залегания слабых грунтов могут применяться индивидуальные решения, а также индивидуальная привязка типовых решений при соответствующих обоснованиях.

Индивидуальное проектирование земляного полотна автомобильных дорог на слабых грунтах предусматривает:

1) назначение геометрических параметров насыпи с учетом обеспечения ее устойчивости и исключения недопустимых вертикальных деформаций по величине и интенсивности в случае полного или частичного сохранения слабых грунтов в основании;

2) назначение дополнительных мероприятий для обеспечения этих условий и принятие соответствующих технологических регламентов.

1.15. Для принятия решений по конструкции насыпи на слабом основании необходимо проведение инженерных изысканий по специальной программе, в процессе которого осуществляются:

— геотехническая оценка свойств грунтов слабой толщи;

— определение типа слабого основания по устойчивости;

— выделение расчетных поперечников по всему участку на слабом основании;

— уточнение выделенных в полевых условиях границ различных слоев слабой толщи по результатам лабораторного определения их (грунтов) состава и состояния;

— предварительное обоснование необходимости удаления или сохранения слабых грунтов в основании насыпи;

— прогноз осадки насыпи (конечной и во времени);

— выполнение расчета динамической устойчивости насыпи на торфяном основании;

— назначение дополнительных мероприятий для обеспечения устойчивости насыпи и ускорения ее осадки.

1.16. Индивидуальное проектирование насыпей автомобильных дорог должно производиться на основании анализа данных инженерных изысканий, выполняемых по специальной программе. Одним из основных этапов инженерных изысканий являются инженерно-геологические изыскания, в результате которых должна была получена информация, необходимая для обоснования положения трассы, назначения конструкции земляного полотна, дополнительных мероприятий для обеспечения устойчивости насыпи и исключения недопустимой по величине и интенсивности осадки и для разработки технологических регламентов. При обосновании проектного решения и технологических регламентов необходимо учитывать реальные условия строительства (требуемые сроки и время года строительства, возможности обеспечения соответствующей техникой, опыт проведения тех или иных работ строительной организацией и др.).

Объем, состав и методы получения данных, необходимых для обоснования конструкции земляного полотна, так же, как и выбор методов расчетов, зависят от стадии проектирования (см. раздел 2).

1.17. Земляное полотно на участке залегания слабых грунтов проектируют в следующем порядке:

— определяют величину конечной осадки насыпи при использовании слабых грунтов в основании;

— проверяют устойчивость слабого основания;

— прогнозируют длительность завершения осадки насыпи;

— в случае необходимости намечают и рассчитывают варианты конструктивно-технологических решений, обеспечивающих повышение устойчивости, ускорение осадки или снижение ее величины;

— выбирают наиболее оптимальный вариант конструкции насыпей и вариант участка трассы на слабом основании;

— дают рекомендации по наиболее рациональной технологии, механизации и организации работ.

1.18. Для выбора конструкции земляного полотна проект должен содержать:

— материалы подробного инженерно-геологического обследования грунтовой толщи на участках залегания слабых грунтов, включая данные по: а) мощности и расположению их в плане, б) мощности слоев и значениям физико-механических характеристик грунтов, в) положению уровня грунтовых вод;

— исходные данные по проектируемой насыпи: а) высота и другие ее геометрические параметры, б) свойства грунтов, укладываемых в насыпь, в) расчетные условия движения транспорта;

— результаты инженерных расчетов, обосновывающие принятую конструкцию насыпи;

— указания по порядку сооружения запроектированной насыпи и осуществлению дополнительных мероприятий.

Окончательно конструкция земляного полотна на участках распространения слабых грунтов должна приниматься на основе технико-экономических расчетов альтернативных вариантов.

ОБЩЕСТВЕННЫЕ ЗДАНИЯ . ВЕНТИЛЯЦИЯ

2.1. За основу при формировании общего подхода к производству, составу и объему работ инженерных изысканий автомобильных дорог на слабых грунтах следует брать положения и рекомендации из нормативных документов: СНиП 2.05.02-85 и СНиП 11-02-96, а также Свода Правил СП 11-105-97.

2.2. Инженерно-геологические изыскания на участках слабых оснований должны выполняться по специальной программе, отраженной в техническом задании. Программа и техническое задание разрабатываются совместно проектной и изыскательской организациями. Материалы, полученные в результате изысканий, в общем случае должны обеспечивать возможность:

— количественной оценки устойчивости основания;

— прогноза величины и длительности осадки основания, обусловленной процессом консолидации.

В целом эти материалы должны позволять оценивать возможность и целесообразность использования слабой толщи в качестве основания насыпи.

В процессе выполнения изысканий программа может корректироваться проектной организацией по мере получения реальных данных.

В проектной документации необходимо предусматривать работы по геотехническому контролю поведения насыпей на участках слабых оснований в процессе строительства и после его окончания (в течение гарантийного срока).

2.3. В состав инженерно-геологических изысканий в рассматриваемых условиях могут входить следующие виды работ:

— сбор, анализ и обобщение материалов изысканий и исследований прошлых лет;

— получение и дешифрирование материалов аэрокосмических съемок;

— рекогносцировочное обследование, включая аэровизуальные и маршрутные наблюдения;

— проходка горных выработок;

— геофизические исследования территории;

— полевые исследования грунтов;

— гидрогеологические исследования;

— стационарные наблюдения;

— лабораторные исследования грунтов и воды;

— составление прогноза возможных изменений инженерно-геологических условий;

— камеральная обработка материалов;

— составление технического отчета (заключения).

2.10. В состав инженерно-геологических изысканий для разработки проекта входят все виды работ, перечисленные в п.2.3.

Состав и объем изыскательских работ должен быть достаточным для выделения в плане и по глубине инженерно-геологических элементов по ГОСТ 20522-96 с определением нормативных и расчетных значений показателей свойств грунтов, в том числе прочностных и деформационных характеристик; для установления гидрогеологических параметров, показателей интенсивности развития геологических процессов, а также агрессивности подземных вод.

2.11. Масштабы инженерно-геологической съемки рекомендуются в пределах 1:10000-1:2000. При соответствующем обосновании в программе изысканий может быть выбран масштаб 1:1000 и менее.

2.12. Геофизические исследования слабой толщи должны дополнять ранее полученную информацию в процессе рекогносцировочного обследования с целью уточнения неоднородности ее строения, направления и скорости движения грунтовых вод, изменчивости характеристик физико-механических свойств слабых грунтов.

2.13. Бурение зондировочных скважин должно осуществляться на конкурирующих вариантах трассы, положение которых уточняется по результатам рекогносцировочного обследования территории строительства.

Следует отдавать предпочтение механическому бурению с непрерывным отбором образцов с ненарушенной (диаметром не менее 100 мм) и с нарушенной структурой. Расстояние между скважинами по оси трассы должно быть 25-50 м в зависимости от особенностей строения слабой толщи. Ширина полосы обследования должна быть не менее 200 м. Причем через 200 м поперечники считаются основными и на них следует проходить по 5-7 скважин, между ними поперечники считаются промежуточными и на них допустимо проходить по 3 скважины. Отбор проб грунта должен проводиться через 0,5-1,0 м, но не менее 3 проб из каждого характерного слоя. Бурение должно выполняться на полную мощность слабых грунтов с заглублением в подстилающие (прочные) грунты на 1,5-2,0 м.

2.14. Если обследуемая слабая толща имеет незначительную мощность или экономически нецелесообразно использование механических буровых станков, то закладываются шурфы. Шурфы копают на всех характерных местах рельефа. Их общее количество должно быть не менее 5 на 1 км трассы. Шурфы размером (1х1,5х2 м) закладывают на расстоянии 10-15 м от оси дороги. При необходимости для уточнения мест изменения почвенно-грунтовых условий между шурфами закладывают прикопки.

В гидрогеологические исследования должны быть включены опытно-фильтрационные работы в соответствии с ГОСТ 23278-78.

2.15. Наблюдения за изменениями свойств грунтов в процессе их предварительного уплотнения или (и) осуществления мелиоративных мероприятий должны проводиться в составе, объеме и методами работ в соответствии с СП 11-105-97 и обоснованными в программе инженерных изысканий.

Стационарные наблюдения, предусмотренные в техническом задании, следует выполнять в характерных местах и на специально оборудованных постах наблюдательной сети, часть из которых рекомендуется использовать для наблюдений в процессе строительства и после его завершения.

2.19. Инженерно-геологические изыскания для разработки рабочей документации назначаются для выявления возможности и целесообразности уточнения:

— проектных решений по конструкции насыпи;

— конструктивно-технологических мероприятий, назначенных для обеспечения устойчивости и исключения недопустимых деформаций слабого основания по величине и интенсивности;

— технологических регламентов строительства земляного полотна.

2.20. На стадии разработки рабочей документации может быть предусмотрено выполнение лабораторных испытаний для прогноза изменения механических свойств слабых грунтов с учетом новых условий работы грунта под нагрузкой от веса насыпи.

При необходимости уточняются толщина слоев слабых грунтов, параметры водоносных горизонтов, динамика геологических процессов, в том числе и за пределами полосы трассы.

2.21. Расстояния между выработками устанавливаются с учетом ранее пройденных выработок, но не менее 25 м между ними при высоте насыпи до 12 м и не менее 10 м при высоте насыпи более 12 м на каждом поперечнике, которые намечаются с расстоянием соответственно 100 или 50 м.

При этом монолиты должны отбираться с таким расчетом, чтобы их состав и состояние в возможно большей степени отвечали расчетным значениям влажности и плотности для выделенных расчетных слоев. Из каждого расчетного слоя должно быть отобрано не менее шести образцов для каждого вида компрессионно-консолидационных испытаний и не менее девяти для сдвиговых.

Глубина выработок должна назначаться ниже глубины сжимаемой зоны на 1-2 м, а при назначении свайной конструкции ниже глубины погружения конца свай на 5 м.

2.29. На характер осадки и скорость ее прохождения влияют: исходное состояние грунта, его фильтрационные и деформационные свойства, а также величина уплотняющей нагрузки на грунт и режим ее приложения. Поэтому при индивидуальном проектировании насыпей на слабом основании в каждом конкретном случае на расчетных поперечниках должны быть проанализированы условия статического уплотнения расчетных слоев слабой толщи и выделена активная зона. В активной зоне должны быть выделены части, в которых будут созданы условия для отжатия поровой воды (живая фильтрационная часть), и части, где они не будут иметь место (мертвая фильтрационная часть). Методика испытаний грунтов на консолидацию и выбор метода прогноза осадки во времени зависят от того, в какой из указанных частей находится грунт (см. пп.3.46-3.56).

Конструкции и оборудование противодымной защиты Для вытяжной противодымной вентиляции необходимо применять каналы воздуховоды, коллекторы, шахты класса мшсн П » по СНиП 2. Ширина проезжей части рампы, м. Почти все типы скатных автостоянок характеризуются непрерывностью движения автомобилей в все нижележащие этажи. Пропускная способность рампы с одной полосой движения автомобилей в час — D теоретически определяется по формуле: Авторский коллектив под руководством проф.

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ СИСТЕМ ВЕНТИЛЯЦИИ ОБЩЕСТВЕННЫХ ЗДАНИЙ

Схемы вытяжной противодымной вентиляции в помещениях хранения автомобилей. В подвальном и цокольном этажах предусмотрены индивидуальные кладовые для хранения сельскохозяйственных продуктов.

В выпуске 1 Пособия приводятся примеры планировочных решений автостоянок, согласованных Мосгоэкспертизой и мггсн к строительству. Устройство мойки автомобилей при автостоянке предусматривается в соответствии с МГСН 5.

R — внешний габаритный радиус; g — рекомендуемое приближение автомобиля к конструкциям здания оборудованию при въезде .

3.13. К оптимальным размерам и положению торгового зала в плане следует отнести квадрат или прямоугольник с отношением сторон 1:1,5 и примыканием к нему преимущественно по длинной стороне группы кладовых и площадей для подготовки товаров к продаже (в составе кладовых). Эти соотношения могут меняться в пределах до 1:2. Допускается применять и другие формы торгового зала с учетом рационального размещения торгового оборудования.

3.14. Планировку торгового зала следует выполнять с учетом следующих рекомендаций:

предусматривать входы-выходы через тамбуры, оборудованные воздушно-тепловыми завесами (в I В, II — III климатических районах), а в условиях IV климатического района при отсутствии кондиционеров допускать возможность отказа от устройства тамбуров;

для I климатического района (кроме IВ) следует предусматривать двойные тамбуры, а при устройстве продуваемого подполья размещать в них ступени (пандусы) для подъема на уровень пола торгового зала;

эвакуационные выходы из всех этажей располагать с внешней относительно торгового зала стороны расчетного узла (в неконтролируемой зоне); на каждом этаже размещать единый централизованный узел; при площади торгового зала более 1,5 тыс. м2 возможно размещать 2 (и более) расчетных узлов или предусматривать (в двух- и более этажных зданиях) на площади первого этажа единый для всех торговых залов расчетный узел. При организации централизованного расчетного узла торговое оборудование может расставляться по линиям, перпендикулярным расчетному узлу или основным эвакуационным проходам. Расчетный узел может проектироваться как по линейной системе, так и двойным рядом (шведский узел) ( рис. 8) с условием обеспечения расчетной ширины основных эвакуационных выходов. Не занятое оборудованием пространство между линиями касс и выходами из торгового зада следует отделять свободно стоящими ограждениями, цветочницами или рекламными указателями, которые не должны препятствовать свободному выходу из зала.

В случаях, когда по расчету требуется не менее двух эвакуационных выходов из торгового зала, в качестве второго выхода можно использовать служебную лестничную клетку и выходы, связанные прямым проходом (коридором) с торговым залом.

3.15. При определении ширины основных эвакуационных проходов из торговых залов (табл. 10, п. 111 и 112 СНиПа) допускается при необходимости отказываться от турникетов и применять «шведские» расчетные узлы, сокращающие общую длину расчетных касс и позволяющих сохранить необходимую ширину основных эвакуационных проходов.

3.29. Решая интерьер торгового зала, следует иметь в виду главную задачу — создание оптимальных условий для показа товаров.

В связи с тем, что в процессе эксплуатации магазина назначение торговых отделов и расстановка оборудования многократно изменяются, художественную характеристику основных элементов (стены, пол, потолок) помещения следует подчинять назначению торговых отделов, принятому к моменту разработки проекта.

Характер отделки вертикальных элементов ограждающих конструкций торговых залов зависит от товарной специфики предприятий (продовольственный, промтоварный, специализированный магазины).

3.30. В интерьерах торговых залов следует применять, как правило, нестационарные средства рекламы к тем, чтобы их можно было изменять в соответствии с пересмотром состава торговых отделов и перемещениями торгового оборудования, а также предусматривать специальные конструкции, которые обеспечивают возможность перестановки средств рекламы. Реклама должна информировать о наличии товаров, о ближайшем их поступлении, о расположении торговых отделов, мест отдыха, стола находок и т.п. Наряду с информационной рекламой следует развивать и другие средства рекламы, дающие художественную характеристику торговым отделам и продаваемым товарам, в виде различных торговых знаков, эмблем и т.п.

3.31. Экспозиция, расположенная в остекленном пространстве наружного ограждения, может быть доступной для обзора не только со стороны улицы, но и из интерьера. Допускается организация экспозиции, просматриваемой только с улицы, с тем, чтобы уменьшить площадь остекленных поверхностей, частично отказавшись от второго остекления со стороны торгового зала с заменой его глухим ограждением, что уменьшит теплопотери здания.

Решение витрин должно учитывать удобный доступ к выставленным образцам и торговым автоматам, если последние размещены в пространстве витрин, а также обеспечивать возможность протирки стекол и уборки пространства между ними (а также фонарей и фрамуг). Для дополнительного притока воздуха в торговый зал в верхней части остекления витрин (при отсутствии кондиционирования) необходимо предусматривать фрамуги-форточки.

Рекомендуется создавать в пространстве витрины неоновую рекламу, решающую задачу оформления витрины в ночное время, позволяющую отключать лампы накаливания, люминесцентное освещение и экономить электроэнергию, сохраняя при этом представительный вид фасада магазина.

3.32. Витрины с экспозицией в продовольственных магазинах предусматривать, как правило, не следует.

Витрины непродовольственных магазинов должны иметь экспозиционные площадки глубиной 1,2 — 2,5 м (в зависимости от ассортимента товаров). Пол экспозиционной площадки должен быть на высоте не более 0,6 м над тротуаром. Горизонтальное членение переплетов витрин на высоте менее 2 м над уровнем пола экспозиционной площадки не допускается.

Витрины, остекленные наружные проемы и входные двери магазинов, осуществляющих продажу ювелирных и других особо ценных товаров, должны быть оборудованы жалюзийными решетками в качестве защитной меры.

Отделку пола рекомендуется принимать в одном тоне и решать его геометрическим нейтральным рисунком, позволяющим, не нарушая композиционного решения интерьера, передвигать торговое оборудование в зале. Другим цветом и другим характером рисунка возможно выделить пол основных эвакуационных проходов, зоны централизованных расчетных узлов лестничных клеток, кафетериев, отдела заказов и т.д.

3.33. Разгрузочные операции и перемещение товаров должны быть основаны на взаимосвязях с торговыми залами, помещениями хранения товаров, системой товародвижения и оснащением предприятия средствами комплексной механизации.

3.34. Разгрузочные платформы должны быть, как правило, выше уровня площадки, где расположены автомобили, на 1,1-1,2 м.

Для малотоннажных автомобилей (в магазинах заказов для отправки) можно принимать высоту над уровнем площадки для автомобилей 0,6-0,8 м (по заданиям на проектирование).

Допускается по заданиям на проектирование размещать площадки для автомобилей на одном уровне с разгрузочной платформой при наличии разгрузочно-подъемных средств. Площадь разгрузочной платформы включается в состав нормируемой площади только при разгрузке в отапливаемых помещениях, когда прием товаров производится на разгрузочной платформе ( рис. 13).

Глубина платформы прямоугольной формы должна быть 4-4,5 и (для сельских населенных пунктов и для разгрузки малотоннажных автомобилей 3 м), пилообразной формы — 2,5-3,5 м в наиболее узком месте.

В крупных продовольственных и непродовольственных магазинах и в магазинах заказов глубину платформы допускается увеличивать до 6 м (по заданиям на проектирование).

3.35. Количество разгрузочных мест в магазинах должно устанавливаться исходя из следующих рекомендаций: при торговой площади магазина до 400 м2 — 1 разгрузочное место; при торговой площади св. 400 до 1000 м2 — 2 разгрузочных места; при торговой площади св. 1000 м2 — 3 и более разгрузочных мест (по расчету).

В магазинах «Спорт и туризм», «Бытовые машины и приборы», «Хозтовары», «Мебель» и «Строительные материалы» следует предусматривать помимо разгрузочных мест места для отправки купленных товаров: при торговой площади до 1000 м2 — 1 место; при торговой площади св. 1000 м2 — 2 места (по расчету).

В магазинах заказов количество разгрузочных мест следует принимать из расчета 1 место на 1000 м2 нормируемой площади, а количество мест для отправки скомплектованных заказов — из расчета 2 места на 1000 м2 нормируемой площади.

Помещения приемочных пунктов следует предусматривать во всех магазинах при разгрузке товаров под навесами и при разгрузке в неотапливаемых помещениях.


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *