Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Законы сохранения в механике википедия». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.
Содержание:
- ↑ Михаил Васильевич Ломоносов. Избранные произведения в 2-х томах. М.: Наука. 1986
- ↑ Фигуровский Н. А. Очерк общей истории химии. От древнейших времен до начала XIX в. — М.: Наука, 1969
- ↑ В латинском тексте письма говорится о сохранении движения — в русском переводе речь идет о сохранении силы. В письме М. В. Ломоносов впервые объединяет в одной формулировке законы сохранения материи и движения и называет это «всеобщим естественным законом».
Задачи на законы сохранения в механике с решениями
- 1 Исторический очерк
- 2 Современное состояние
- 3 Примечания
- 4 Литература
Закон сохранения массы исторически понимался как одна из формулировок закона сохранения материи. Одним из первых его сформулировал древнегреческий философ Эмпедокл (V век до н. э.):
Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.
Позже аналогичный тезис высказывали Демокрит, Аристотель и Эпикур (в пересказе Лукреция Кара). Средневековые учёные также не высказывали никаких сомнений в истинности этого закона.
С появлением понятия массы как меры количества вещества, пропорциональной весу, формулировка закона сохранения материи была уточнена: масса есть инвариант, то есть при всех процессах общая масса не уменьшается и не увеличивается. В 1630 году Жан Рэ (Jean Rey, 1583-1645), доктор из Перигора, писал Мерсенну [1]
Вес настолько тесно привязан к веществу элементов, что, превращаясь из одного в другой, они всегда сохраняют тот же самый вес.
В середине XVIII века опыты Роберта Бойля поставили закон сохранения массы под сомнение — у него при химической реакции вес вещества увеличился. Однако Ломоносов и другие физики вскоре указали Бойлю на его ошибку: увеличение веса происходило за счёт воздуха, а в запаянном сосуде вес сохранялся неизменным. Ломоносов писал Эйлеру:
Все встречающиеся в природе изменения происходят так, что если к чему-либо нечто прибавилось, то это отнимается у чего-то другого. Так, сколько материи прибавляется к какому-либо телу, столько же теряется у другого, сколько часов я затрачиваю на сон, столько же отнимаю от бодрствования и т. д.
В дальнейшем, вплоть до создания физики микромира, закон сохранения массы считался истинным и очевидным. Лавуазье в «Начальном учебнике химии» (1789), приводит точную количественную формулировку закона сохранения массы вещества, однако не объявляет его каким-то новым и важным законом, а просто упоминает мимоходом как о хорошо известном и давно установленном факте. Для химических реакций Лавуазье сформулировал закон так: «Масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции».
- ↑ Письмо Жана Рэ
Презентация по физике «Законы сохранения в механике».
Симметрия в физике | ||
---|---|---|
Преобразование | Соответствующая инвариантность |
Соответствующий закон сохранения |
↕ Трансляции времени | …энергии | |
⊠ C, P, CP и T-симметрии | …чётности | |
↔ Трансляции пространства | Однородность пространства |
…импульса |
↺ Вращения пространства | Изотропность пространства |
…момента импульса |
⇆ Группа Лоренца | Относительность Лоренц-инвариантность |
…4-импульса |
~ Калибровочное преобразование | Калибровочная инвариантность | …заряда |
Согласно теореме Нётер каждому закону сохранения ставится в соответствие некая симметрия уравнений, описывающих систему. В частности, закон сохранения импульса эквивалентен однородности пространства, то есть независимости всех законов, описывающих систему, от положения системы в пространстве. Простейший вывод этого утверждения основан на применении лагранжева подхода к описанию системы.
Основная статья: Проблема законов сохранения в общей теории относительности
Аналогично ситуации с законом сохранения энергии, при переходе к искривлённому пространству-времени закон сохранения импульса, выражаемый пространственными компонентами соотношения для тензора энергии-импульса
Правила Кирхгофа для токов напрямую следуют из закона сохранения заряда. Объединение проводников и радиоэлектронных компонентов представляется в виде незамкнутой системы. Суммарный приток зарядов в данную систему равен суммарному выходу зарядов из системы. В правилах Кирхгофа предполагается что электронная система не может значительно изменять свой суммарный заряд.
Основная статья: Первое начало термодинамики
В термодинамике исторически закон сохранения формулируется в виде первого принципа термодинамики:
Изменение внутренней энергии термодинамической системы при переходе её из одного состояния в другое равно сумме работы внешних сил над системой и количества теплоты, переданного системе, и не зависит от способа, которым осуществляется этот переход
или альтернативно[8]:
Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил
В математической формулировке это может быть выражено следующим образом:
Основная статья: Закон Бернулли
В гидродинамике идеальной жидкости закон сохранения энергии традиционно формулируется в виде уравнения Бернулли: вдоль линий тока остаётся постоянной сумма[9]
Основная статья: Теорема Пойнтинга
В электродинамике закон сохранения энергии исторически формулируется в виде теоремы Пойнтинга[11][12](иногда также называемой теоремой Умова—Пойнтинга[13]), связывающей плотность потока электромагнитной энергии с плотностью электромагнитной энергии и плотностью джоулевых потерь. В словесной форме теорема может быть сформулирована следующим образом:
Изменение электромагнитной энергии, заключённой в неком объёме, за некий интервал времени равно потоку электромагнитной энергии через поверхность, ограничивающую данный объём, и количеству тепловой энергии, выделившейся в данном объёме, взятой с обратным знаком.
Математически это выражается в виде (здесь и ниже в разделе использована гауссова система единиц)
Основная статья: Соотношения Мэнли — Роу
В нелинейной оптике рассматривается распространение оптического (и вообще электромагнитного) излучения в среде с учётом многоквантового взаимодействия этого излучения с веществом среды. В частности, широкий круг исследований посвящён задачам так называемых трёх- и четырёхволнового взаимодействий, в которых происходит взаимодействие, соответственно, трёх или четырёх квантов излучения. Поскольку каждый отдельный акт такого взаимодействия подчиняется законам сохранения энергии и импульса, существует возможность сформулировать достаточно общие соотношения между макроскопическими параметрами взаимодействующих волн. Эти соотношения носят название соотношений Мэнли — Роу.
В релятивистской механике вводится понятие 4-вектора энергии-импульса (или просто четырёхимпульса)[14]. Его введение позволяет записать законы сохранения канонического импульса и энергии в единой форме, которая к тому же является лоренц-ковариантной, то есть не меняется при переходе из одной инерциальной системы отсчёта в другую. Например, при движении заряженной материальной точки в электромагнитном поле ковариантная форма закона сохранения имеет вид
В квантовой механике также возможно формулирование закона сохранения энергии для изолированной системы. Так, в шредингеровском представлении при отсутствии внешних переменных полей гамильтониан системы не зависит от времени и можно показать[15], что волновая функция, отвечающая решению уравнения Шредингера, может быть представлена в виде:
Основная статья: Проблема законов сохранения в общей теории относительности
Являясь обобщением специальной теории относительности, общая теория относительности пользуется обобщением понятия четырёхимпульса — тензором энергии-импульса. Закон сохранения формулируется для тензора энергии-импульса системы и в математической форме имеет вид[17]
Основная статья: Инерция
Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.
В современной физике первый закон Ньютона принято формулировать в следующем виде[1]:
Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго. |
Закон верен также в ситуации, когда внешние воздействия присутствуют, но взаимно компенсируются (это следует из 2-го закона Ньютона, так как скомпенсированные силы сообщают телу нулевое суммарное ускорение).
Ньютон в своей книге «Математические начала натуральной философии» сформулировал первый закон механики в следующем виде:
Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние. |
С современной точки зрения, такая формулировка неудовлетворительна. Во-первых, термин «тело» следует заменить термином «материальная точка», так как тело конечных размеров в отсутствие внешних сил может совершать и вращательное движение. Во-вторых, и это главное, Ньютон в своём труде опирался на существование абсолютной неподвижной системы отсчёта, то есть абсолютного пространства и времени, а это представление современная физика отвергает. С другой стороны, в произвольной (скажем, вращающейся) системе отсчёта закон инерции неверен. Поэтому ньютоновская формулировка нуждается в уточнениях.
Исходная формулировка Ньютона:
Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует. |
Интересно, что если добавить требование инерциальной системы отсчёта, то в такой формулировке этот закон справедлив даже в релятивистской механике.
Законы Ньютона — не самый глубокий уровень формулирования классической механики. В рамках Лагранжевой механики имеется одна-единственная формула (запись механического действия) и один-единственный постулат (тела движутся так, чтобы действие было стационарным), и из этого можно вывести все законы Ньютона, правда, только для лагранжевых систем (следует, однако, отметить, что все известные фундаментальные взаимодействия описываются именно лагранжевыми системами). Более того, в рамках Лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима.
|
||||||
Основная информация по курсу физики для обучения и подготовки в экзаменам, ГВЭ, ЕГЭ, ОГЭ, ГИА | ||||||
Физические величины и их единицы в СИ |
Профессии: Техника и производство
Перейдем к изложению основных понятий классической механики. Для простоты, мы будем рассматривать только материальную точку, т. е. тело, размером которого можно пренебречь. Движение материальной точки характеризуется несколькими параметрами: её положением, массой, и приложенными к ней силами. Рассмотрим каждый из них по очереди.
В действительности, любое тело, которое подчиняется законам классической механики, обязательно имеет ненулевой размер. Настоящие материальные точки, такие, как электрон, подчиняются законам квантовой механики. Тела ненулевого размера могут испытывать более сложные движения, поскольку может меняться их внутренняя конфигурация, например, потому что теннисный мяч может двигаться, вращаясь. Тем не менее, мы сможем применить к подобным телам результаты, полученные для материальных точек, рассматривая такие тела, как совокупности большого количества взаимодействующих материальных точек. Мы сможем показать, что такие сложные тела ведут себя, как материальные точки, при условии, что они малы в масштабах рассматриваемой задачи.
Закон сохранения механической энергии
Бытовые услуги • Телекоммуникационные компании • Доставка готовых блюд • Организация и проведение праздников • Ремонт мобильных устройств • Ателье швейные • Химчистки одежды • Сервисные центры • Фотоуслуги • Праздничные агентства
Между телами, составляющими замкнутую систему, действуют силы трения, тогда механическая энергия не сохраняется, ее часть переходит во внутреннюю. Любые физические взаимодействия не провоцируют возникновение или исчезновение энергии. Она переходит из одной формы в другую. Данный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии.
Следствием является утверждение о невозможности создания вечного двигателя (perpetuum mobile) – машины, которая совершала бы работу и не расходовала энергию.
На небольших расстояниях (порядка комптоновской длины волны электрона,